Nanotube Superfiber Materials

Nanotube Superfiber Materials PDF Author: Mark Schulz
Publisher: William Andrew
ISBN: 0128126957
Category : Technology & Engineering
Languages : en
Pages : 974

Get Book Here

Book Description
Nanotube Superfiber Materials: Science, Manufacturing, Commercialization, Second Edition, helps engineers and entrepreneurs understand the science behind the unique properties of nanotube fiber materials, how to efficiency and safely produce them, and how to transition them into commercial products. Each chapter gives an account of the basic science, manufacturing, properties and commercial potential of a specific nanotube material form and its application. New discoveries and technologies are explained, along with experiences in handing-off the improved materials to industry. This book spans nano-science, nano-manufacturing, and the commercialization of nanotube superfiber materials. As such, it opens up the vast commercial potential of nanotube superfiber materials. Applications for nanotube superfiber materials cut across most of the fields of engineering, including spacecraft, automobiles, drones, hyperloop tracks, water and air filters, infrastructure, wind energy, composites, and medicine where nanotube materials enable development of tiny machines that can work inside our bodies to diagnose and treat disease. - Provides up to date information on the applications of nanotube fiber materials - Explores both the manufacturing and commercialization of nanotube superfibers - Sets out the processes for producing macro-scale materials from carbon nanotubes - Describes the unique properties of these materials

Nanotube Superfiber Materials

Nanotube Superfiber Materials PDF Author: Mark Schulz
Publisher: William Andrew
ISBN: 0128126957
Category : Technology & Engineering
Languages : en
Pages : 974

Get Book Here

Book Description
Nanotube Superfiber Materials: Science, Manufacturing, Commercialization, Second Edition, helps engineers and entrepreneurs understand the science behind the unique properties of nanotube fiber materials, how to efficiency and safely produce them, and how to transition them into commercial products. Each chapter gives an account of the basic science, manufacturing, properties and commercial potential of a specific nanotube material form and its application. New discoveries and technologies are explained, along with experiences in handing-off the improved materials to industry. This book spans nano-science, nano-manufacturing, and the commercialization of nanotube superfiber materials. As such, it opens up the vast commercial potential of nanotube superfiber materials. Applications for nanotube superfiber materials cut across most of the fields of engineering, including spacecraft, automobiles, drones, hyperloop tracks, water and air filters, infrastructure, wind energy, composites, and medicine where nanotube materials enable development of tiny machines that can work inside our bodies to diagnose and treat disease. - Provides up to date information on the applications of nanotube fiber materials - Explores both the manufacturing and commercialization of nanotube superfibers - Sets out the processes for producing macro-scale materials from carbon nanotubes - Describes the unique properties of these materials

Nanotube Superfiber Materials

Nanotube Superfiber Materials PDF Author: Brad Ruff
Publisher: Elsevier Inc. Chapters
ISBN: 0128091134
Category : Technology & Engineering
Languages : en
Pages : 27

Get Book Here

Book Description
There are two ways to manufacture components and devices, the top-down and bottom-up processes. Each process has its advantages and disadvantages. In our group, the bottom-up process was selected to build up electromagnetic devices using nanoscale materials in a series of steps. The design of a lightweight electric motor is described based on using nanoscale materials. Development of the motor is work in progress and various processes and results are described. There are several potential applications for lightweight sustainable electric motors. One billion electric motors are produced in the world each year.

Nanotube Superfiber Materials

Nanotube Superfiber Materials PDF Author: Mark Schulz
Publisher: William Andrew
ISBN: 1455778648
Category : Technology & Engineering
Languages : en
Pages : 861

Get Book Here

Book Description
Nanotube Superfiber Materials refers to different forms of macroscale materials with unique properties constructed from carbon nanotubes. These materials include nanotube arrays, ribbons, scrolls, yarn, braid, and sheets. Nanotube materials are in the early stage of development and this is the first dedicated book on the subject. Transitioning from molecules to materials is a breakthrough that will positively impact almost all industries and areas of society. Key properties of superfiber materials are high flexibility and fatigue resistance, high energy absorption, high strength, good electrical conductivity, high maximum current density, reduced skin and proximity effects, high thermal conductivity, lightweight, good field emission, piezoresistive, magnetoresistive, thermoelectric, and other properties. These properties will open up the door to dozens of applications including replacing copper wire for power conduction, EMI shielding, coax cable, carbon biofiber, bullet-proof vests, impact resistant glass, wearable antennas, biomedical microdevices, biosensors, self-sensing composites, supercapacitors, superinductors, hybrid superconductor, reinforced elastomers, nerve scaffolding, energy storage, and many others. The scope of the book covers three main areas: Part I: Processing; Part II: Properties; and Part III: Applications. Processing involves nanotube synthesis and macro scale material formation methods. Properties covers the mechanical, electrical, chemical and other properties of nanotubes and macroscale materials. Different approaches to growing high quality long nanotubes and spinning the nanotubes into yarn are explained in detail. The best ideas are collected from all around the world including commercial approaches. Applications of nanotube superfiber cover a huge field and provides a broad survey of uses. The book gives a broad overview starting from bioelectronics to carbon industrial machines. - First book to explore the production and applications of macro-scale materials made from nano-scale particles - Sets out the processes for producing macro-scale materials from carbon nanotubes, and describes the unique properties of these materials - Potential applications for CNT fiber/yarn include replacing copper wire for power conduction, EMI shielding, coax cable, carbon biofiber, bullet-proof vests, impact resistant glass, wearable antennas, biomedical microdevices, biosensors, self-sensing composites, supercapacitors, superinductors, hybrid superconductor, reinforced elastomers, nerve scaffolding, energy storage, and many others

Nanotube Superfiber Materials

Nanotube Superfiber Materials PDF Author: Adam Hehr
Publisher: Elsevier Inc. Chapters
ISBN: 0128091169
Category : Technology & Engineering
Languages : en
Pages : 76

Get Book Here

Book Description
This chapter investigates the use of carbon nanotube (CNT) sensor thread in distributed structural health monitoring (SHM) systems, specifically as embedded damage and strain sensors. The CNT sensor thread has shown potential to be integrated into/onto composite materials to provide confident damage detection, localization, and characterization in complex geometries without complicated detection algorithms and minimal sensing channels. This chapter articulates current work done with CNT thread in Nanoworld Laboratories, specifically CNT thread performance as a sensor; past, current, and future embedded sensing work; and potential SHM design architectures for aircraft, along with a description of a few potential multifunctional aspects of the material. Multifunctional here implies improving the composite material besides self-sensing of damage and strain. Some of these multifunctional characteristics include self-sensing of moisture, oxidation, and temperature; improved mechanical properties of damping, toughness, stiffness, and strength; and improved thermal and electrical transport, among many other potential areas. Besides these multifunctional characteristics, CNT thread is low in weight and small in size and the material is modest in cost. As a consequence of these strong sensor and material characteristics, the authors believe that this could be a game-changing material for high-cost composite commercial and defense vehicles. Future military and commercial composite vehicles will have “nano inside” to provide safety, reliability, durability, condition-based maintenance, and multifunctionality.

Nanotube Superfiber Materials

Nanotube Superfiber Materials PDF Author: Simon Jestin
Publisher: Elsevier Inc. Chapters
ISBN: 0128090987
Category : Technology & Engineering
Languages : en
Pages : 68

Get Book Here

Book Description
Recent developments in the field of carbon nanotube (CNT)-based wet-spun fibers are described in this chapter. Wet spinning essentially enables a wide variety of polymers to be spun into fibers. It has been used to produce composite fibers composed of polymers loaded with CNTs, and even fibers solely composed of CNTs. Fibers obtained by wet-spinning approaches contain highly aligned CNTs making the fibers suitable for use in a variety of textile, cable and composite applications. Exciting results have been achieved at the laboratory scale. Today it is critical to consider scale-up of production of such superfibers so that applications can be fully validated.

Nanotube Superfiber Materials

Nanotube Superfiber Materials PDF Author: Mark J. Schulz
Publisher: Elsevier Inc. Chapters
ISBN: 0128090944
Category : Technology & Engineering
Languages : en
Pages : 46

Get Book Here

Book Description
Nanotubes are a unique class of materials because their properties depend not only on their composition but also on their geometry. The diameter, number of walls, length, chirality, van der Waals forces, and quality all affect the properties and performance of nanotubes. This dependence on geometry is what makes scaling-up nanotubes to form bulk material so challenging. Nanotubes are also unusual because they stick together to form bundles or strands. Nanotube superfiber materials are fibrous assemblages of nanotubes and strands. The hope and dream of researchers around the world is that nanotube superfiber materials will have broad applications and change engineering design. This chapter gives a perspective on nanotube superfiber development. This chapter discusses new applications—where we think we can go with the material properties and what applications will be enabled—and new techniques for developing superfiber material.

Nanotube Superfiber Materials

Nanotube Superfiber Materials PDF Author: Rachit Malik
Publisher: Elsevier Inc. Chapters
ISBN: 0128091053
Category : Technology & Engineering
Languages : en
Pages : 62

Get Book Here

Book Description
Individual carbon nanotubes (CNTs) have exceptional mechanical and electrical properties. However, the transfer of these extraordinary qualities into CNT products, without compromising performance, remains a challenge. This chapter presents an overview of the manufacturing of CNT sheets and buckypaper and also describes research performed at the University of Cincinnati in this field. CNT arrays were grown using the chemical vapor deposition method. Sheets were drawn from the spinnable CNT arrays and characterized using scanning electron microscopy to show the highly unidirectional alignment of the nanotubes in the sheet. The anisotropic morphology of the sheet provides superior properties along one material axis as observed by measuring the tensile strength, electrical resistivity, optical transmittance, and electromagnetic interference shielding properties of the material. Surface modification of aligned multiwall nanotube sheets was carried out via incorporation of an atmospheric pressure plasma jet in the sheet posttreatment process. Helium/oxygen plasma was utilized to produce carboxyl (–COO−) functionality on the surface of the nanotubes. X-ray photoelectron spectroscopy confirmed the presence of the functional groups on the nanotube surface. The sheet was further characterized using Raman spectroscopy, Fourier transform infrared spectroscopy, and contact angle testing. Composite laminates made from functionalized CNT sheets showed higher strength than those made with pristine sheets. The effects of plasma power and oxygen concentration were studied in order to determine the best possible parameters for functionalization. Plasma treatment is a useful tool for fast, clean and dry functionalization of CNTs. This study demonstrates the ease of incorporating the plasma tool in the manufacturing process of sheets leading to the production of CNT/polymer composites. Macroscopic structures of nanotubes such as threads and sheets are leading to novel applications.

Nanotube Superfiber Materials

Nanotube Superfiber Materials PDF Author: Weifeng Li
Publisher: Elsevier Inc. Chapters
ISBN: 0128091177
Category : Technology & Engineering
Languages : en
Pages : 63

Get Book Here

Book Description
Medical change is coming. Robots and tiny machines built using nanoscale materials are going to fundamentally change engineering at the microscale and medicine will be the first area to benefit. In tiny machine design, copper and iron are replaced with carbon nanotube superfiber wire and magnetic nanocomposite materials. Because of the small size of tiny machines, high magnetic fields can be generated and high-force, high-speed devices can be built. Tiny machines are still in the early stages of being built and this chapter describes their engineering design and the work underway to build them. The tiny machines will operate inside the body and detect disease at an early stage, then provide precise therapy or surgery. There will also be engineering applications for the tiny machines such as performing high-throughput manufacturing operations at the microscale. The design principles and materials processing techniques described herein will facilitate the development of nanomaterial robots and tiny machines for myriad applications ranging from miniaturized sensors, actuators, energy harvesting devices, high-performance electric motors, and energy storage devices to smart structures with built-in artificial responsive behavior.

Nanotube Superfiber Materials

Nanotube Superfiber Materials PDF Author: Canh-Dung Tran
Publisher: Elsevier Inc. Chapters
ISBN: 0128090995
Category : Technology & Engineering
Languages : en
Pages : 49

Get Book Here

Book Description
Carbon nanotube (CNT) yarn, a macroscopic structure of CNTs with many potential applications, has attracted increased attention around the world and across many research areas and industrial fields, including materials science, electronics, medical biology and ecology. Spinning CNTs into yarn based on traditional textile spinning principles has demonstrated the potential in many important applications by producing weavable multifunctionalized yarns. Between 1991 and 2010, new manufacturing methods have enabled the production of pure CNT yarns and CNT-based composite yarns called superfiber suitable for weaving, knitting and braiding with continuous improvements. Especially various novel technologies are used to recently produce yarns for electrochemical devices and medical bioengineering. Thus, the studies on assembling individual CNTs into macrostructures of controlled and oriented configurations continue to play an important role in exploiting CNT potential applications.

Nanotube Superfiber Materials

Nanotube Superfiber Materials PDF Author: Michael B. Jakubinek
Publisher: Elsevier Inc. Chapters
ISBN: 0128091088
Category : Technology & Engineering
Languages : en
Pages : 49

Get Book Here

Book Description
Individual carbon nanotubes (CNTs) have been reported to have the highest thermal conductivities of any known material. However, significant variability exists both for the reported thermal conductivities of individual CNTs and the thermal conductivities measured for macroscopic CNT assemblies (e.g. CNT films, buckypapers, arrays, and fibers), which range from comparable to metals to aerogel-like. This chapter reviews the current status of the field, summarizing a wide selection of experimental results and drawing conclusions regarding present limitations of the thermal conductivity of CNT assemblies and opportunities for improvement of the performance of nanotube superfiber materials.