Nanoscale Computing

Nanoscale Computing PDF Author: Santhosh Sivasubramani
Publisher: John Wiley & Sons
ISBN: 1394263554
Category : Technology & Engineering
Languages : en
Pages : 422

Get Book Here

Book Description
Understand the future of computing with this accessible, wide-ranging introduction to a promising field Miniaturization and the emergence of nanotechnology have together constituted the most revolutionary development in recent decades of computing research and innovation. Nanomagnetic computing and logic have allowed engineers and programmers to move beyond the Complementary Metal-Oxide-Semiconductor (CMOS) and their associated methods into a new world of cutting-edge computing technology. Nanoscale Computing offers the first-ever single-authored textbook on this vital subject, introducing the fundamentals of nanoscale computing, their suitability to the traditional limitations of CMOS computing, and their growing number of applications. The result is a key text for students, professionals, and researchers alike. Nanoscale Computing readers will also find: An emphasis on practical applications, both current and future Detailed discussion of topics including nanomagnetic logic, edge computing, and more End of chapter quizzes and additional tutorials to facilitate learning Nanoscale Computing is ideal for researchers and technology experts, as well as graduate and undergraduate students working in computer science, nanotechnology, magnetics, electronics, semiconductors, electron devices, circuits/systems, and multi-interdisciplinary related fields.

Nanoscale Computing

Nanoscale Computing PDF Author: Santhosh Sivasubramani
Publisher: John Wiley & Sons
ISBN: 1394263554
Category : Technology & Engineering
Languages : en
Pages : 422

Get Book Here

Book Description
Understand the future of computing with this accessible, wide-ranging introduction to a promising field Miniaturization and the emergence of nanotechnology have together constituted the most revolutionary development in recent decades of computing research and innovation. Nanomagnetic computing and logic have allowed engineers and programmers to move beyond the Complementary Metal-Oxide-Semiconductor (CMOS) and their associated methods into a new world of cutting-edge computing technology. Nanoscale Computing offers the first-ever single-authored textbook on this vital subject, introducing the fundamentals of nanoscale computing, their suitability to the traditional limitations of CMOS computing, and their growing number of applications. The result is a key text for students, professionals, and researchers alike. Nanoscale Computing readers will also find: An emphasis on practical applications, both current and future Detailed discussion of topics including nanomagnetic logic, edge computing, and more End of chapter quizzes and additional tutorials to facilitate learning Nanoscale Computing is ideal for researchers and technology experts, as well as graduate and undergraduate students working in computer science, nanotechnology, magnetics, electronics, semiconductors, electron devices, circuits/systems, and multi-interdisciplinary related fields.

Bio-Inspired and Nanoscale Integrated Computing

Bio-Inspired and Nanoscale Integrated Computing PDF Author: Mary Mehrnoosh Eshaghian-Wilner
Publisher: John Wiley & Sons
ISBN: 0470429976
Category : Technology & Engineering
Languages : en
Pages : 573

Get Book Here

Book Description
Brings the latest advances in nanotechnology and biology to computing This pioneering book demonstrates how nanotechnology can create even faster, denser computing architectures and algorithms. Furthermore, it draws from the latest advances in biology with a focus on bio-inspired computing at the nanoscale, bringing to light several new and innovative applications such as nanoscale implantable biomedical devices and neural networks. Bio-Inspired and Nanoscale Integrated Computing features an expert team of interdisciplinary authors who offer readers the benefit of their own breakthroughs in integrated computing as well as a thorough investigation and analyses of the literature. Carefully edited, the book begins with an introductory chapter providing a general overview of the field. It ends with a chapter setting forth the common themes that tie the chapters together as well as a forecast of emerging avenues of research. Among the important topics addressed in the book are modeling of nano devices, quantum computing, quantum dot cellular automata, dielectrophoretic reconfigurable nano architectures, multilevel and three-dimensional nanomagnetic recording, spin-wave architectures and algorithms, fault-tolerant nanocomputing, molecular computing, self-assembly of supramolecular nanostructures, DNA nanotechnology and computing, nanoscale DNA sequence matching, medical nanorobotics, heterogeneous nanostructures for biomedical diagnostics, biomimetic cortical nanocircuits, bio-applications of carbon nanotubes, and nanoscale image processing. Readers in electrical engineering, computer science, and computational biology will gain new insights into how bio-inspired and nanoscale devices can be used to design the next generation of enhanced integrated circuits.

Robust Computing with Nano-scale Devices

Robust Computing with Nano-scale Devices PDF Author: Chao Huang
Publisher: Springer Science & Business Media
ISBN: 9048185408
Category : Technology & Engineering
Languages : en
Pages : 184

Get Book Here

Book Description
Robust Nano-Computing focuses on various issues of robust nano-computing, defect-tolerance design for nano-technology at different design abstraction levels. It addresses both redundancy- and configuration-based methods as well as fault detecting techniques through the development of accurate computation models and tools. The contents present an insightful view of the ongoing researches on nano-electronic devices, circuits, architectures, and design methods, as well as provide promising directions for future research.

Ultimate Computing

Ultimate Computing PDF Author: S.R. Hameroff
Publisher: Elsevier
ISBN: 0444600094
Category : Computers
Languages : en
Pages : 380

Get Book Here

Book Description
The possibility of direct interfacing between biological and technological information devices could result in a merger of mind and machine - Ultimate Computing. This book, a thorough consideration of this idea, involves a number of disciplines, including biochemistry, cognitive science, computer science, engineering, mathematics, microbiology, molecular biology, pharmacology, philosophy, physics, physiology, and psychology.

Handbook of Nature-Inspired and Innovative Computing

Handbook of Nature-Inspired and Innovative Computing PDF Author: Albert Y. Zomaya
Publisher: Springer Science & Business Media
ISBN: 0387277056
Category : Computers
Languages : en
Pages : 737

Get Book Here

Book Description
As computing devices proliferate, demand increases for an understanding of emerging computing paradigms and models based on natural phenomena. Neural networks, evolution-based models, quantum computing, and DNA-based computing and simulations are all a necessary part of modern computing analysis and systems development. Vast literature exists on these new paradigms and their implications for a wide array of applications. This comprehensive handbook, the first of its kind to address the connection between nature-inspired and traditional computational paradigms, is a repository of case studies dealing with different problems in computing and solutions to these problems based on nature-inspired paradigms. The "Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Models with Emerging Technologies" is an essential compilation of models, methods, and algorithms for researchers, professionals, and advanced-level students working in all areas of computer science, IT, biocomputing, and network engineering.

Natural Computing

Natural Computing PDF Author: Ferdinand Peper
Publisher: Springer Science & Business Media
ISBN: 4431538682
Category : Science
Languages : en
Pages : 401

Get Book Here

Book Description
This book is the refereed proceedings of the Fourth International Workshop on Natural Computing, IWNC 2009, held in Himeji International Exchange Center, HIMEJI, JAPAN on September 2009. IWNC aims to bring together computer scientists, biologists, mathematicians, electronic engineers, physicists, and humanitarians, to critically assess present findings in the field, and to outline future developments in nature-inspired computing.

Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices

Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices PDF Author: Manan Suri
Publisher: Springer
ISBN: 813223703X
Category : Technology & Engineering
Languages : en
Pages : 217

Get Book Here

Book Description
This book covers all major aspects of cutting-edge research in the field of neuromorphic hardware engineering involving emerging nanoscale devices. Special emphasis is given to leading works in hybrid low-power CMOS-Nanodevice design. The book offers readers a bidirectional (top-down and bottom-up) perspective on designing efficient bio-inspired hardware. At the nanodevice level, it focuses on various flavors of emerging resistive memory (RRAM) technology. At the algorithm level, it addresses optimized implementations of supervised and stochastic learning paradigms such as: spike-time-dependent plasticity (STDP), long-term potentiation (LTP), long-term depression (LTD), extreme learning machines (ELM) and early adoptions of restricted Boltzmann machines (RBM) to name a few. The contributions discuss system-level power/energy/parasitic trade-offs, and complex real-world applications. The book is suited for both advanced researchers and students interested in the field.

Nanonetworks

Nanonetworks PDF Author: Florian-Lennert A. Lau
Publisher: John Wiley & Sons
ISBN: 1394213107
Category : Technology & Engineering
Languages : en
Pages : 388

Get Book Here

Book Description
Learn the basics—and more—of nanoscale computation and communication in this emerging and interdisciplinary field The field of nanoscale computation and communications systems is a thriving and interdisciplinary research area which has made enormous strides in recent years. A working knowledge of nanonetworks, their conceptual foundations, and their applications is an essential tool for the next generation of scientists and network engineers. Nanonetworks: The Future of Communication and Computation offers a thorough, accessible overview of this subject rooted in extensive research and teaching experience. Offering a concise and intelligible introduction to the key paradigms of nanoscale computation and communications, it promises to become a cornerstone of education in these fast-growing areas. Readers will also find: Detailed treatment of topics including network paradigms, machine learning, safety and security Coverage of the history, applications, and important theories of nanonetworks research Examples and use-cases for all formulas and equations Nanonetworks is ideal for advanced undergraduate and graduate students in engineering and science, as well as practicing professionals looking for an introductory book to help them understand the foundations of nanonetwork systems.

No Small Matter

No Small Matter PDF Author: Felice C. Frankel
Publisher: Belknap Press
ISBN: 9780674035669
Category : Science
Languages : en
Pages : 200

Get Book Here

Book Description
A small revolution is remaking the world. The only problem is, we can’t see it. This book uses dazzling images and evocative descriptions to reveal the virtually invisible realities and possibilities of nanoscience. An introduction to the science and technology of small things, No Small Matter explains science on the nanoscale. Authors Felice C. Frankel and George M. Whitesides offer an overview of recent scientific advances that have given us our ever-shrinking microtechnology—for instance, an information processor connected by wires only 1,000 atoms wide. They describe the new methods used to study nanostructures, suggest ways of understanding their often bizarre behavior, and outline their uses in technology. This book explains the various means of making nanostructures and speculates about their importance for critical developments in information processing, computation, biomedicine, and other areas. No Small Matter considers both the benefits and the risks of nano/microtechnology—from the potential of quantum computers and single-molecule genomic sequencers to the concerns about self-replicating nanosystems. By making the practical and probable realities of nanoscience as comprehensible and clear as possible, the book provides a unique vision of work at the very boundaries of modern science.

Nano, Quantum and Molecular Computing

Nano, Quantum and Molecular Computing PDF Author: Sandeep Kumar Shukla
Publisher: Springer Science & Business Media
ISBN: 1402080689
Category : Computers
Languages : en
Pages : 364

Get Book Here

Book Description
One of the grand challenges in the nano-scopic computing era is guarantees of robustness. Robust computing system design is confronted with quantum physical, probabilistic, and even biological phenomena, and guaranteeing high reliability is much more difficult than ever before. Scaling devices down to the level of single electron operation will bring forth new challenges due to probabilistic effects and uncertainty in guaranteeing 'zero-one' based computing. Minuscule devices imply billions of devices on a single chip, which may help mitigate the challenge of uncertainty by replication and redundancy. However, such device densities will create a design and validation nightmare with the shear scale. The questions that confront computer engineers regarding the current status of nanocomputing material and the reliability of systems built from such miniscule devices, are difficult to articulate and answer. We have found a lack of resources in the confines of a single volume that at least partially attempts to answer these questions. We believe that this volume contains a large amount of research material as well as new ideas that will be very useful for some one starting research in the arena of nanocomputing, not at the device level, but the problems one would face at system level design and validation when nanoscopic physicality will be present at the device level.