Author: Yogesh M. Joshi
Publisher: Springer
ISBN: 813222289X
Category : Technology & Engineering
Languages : en
Pages : 382
Book Description
The book is an outcome of research work in the areas of nanotechnology, interfacial science, nano- and micro-fluidics and manufacturing, soft matter, and transport phenomena at nano- and micro-scales. The contributing authors represent prominent research groups from Indian Institute of Technology Bombay, Indian Institute of Technology Kanpur and Indian Institute of Science, Bangalore. The book has 13 chapters and the entire work presented in the chapters is based on research carried out over past three years. The chapters are designed with number of coloured illustrations, figures and tables. The book will be highly beneficial to academicians as well as industrial professionals working in the mentioned areas.
Nanoscale and Microscale Phenomena
Author: Yogesh M. Joshi
Publisher: Springer
ISBN: 813222289X
Category : Technology & Engineering
Languages : en
Pages : 382
Book Description
The book is an outcome of research work in the areas of nanotechnology, interfacial science, nano- and micro-fluidics and manufacturing, soft matter, and transport phenomena at nano- and micro-scales. The contributing authors represent prominent research groups from Indian Institute of Technology Bombay, Indian Institute of Technology Kanpur and Indian Institute of Science, Bangalore. The book has 13 chapters and the entire work presented in the chapters is based on research carried out over past three years. The chapters are designed with number of coloured illustrations, figures and tables. The book will be highly beneficial to academicians as well as industrial professionals working in the mentioned areas.
Publisher: Springer
ISBN: 813222289X
Category : Technology & Engineering
Languages : en
Pages : 382
Book Description
The book is an outcome of research work in the areas of nanotechnology, interfacial science, nano- and micro-fluidics and manufacturing, soft matter, and transport phenomena at nano- and micro-scales. The contributing authors represent prominent research groups from Indian Institute of Technology Bombay, Indian Institute of Technology Kanpur and Indian Institute of Science, Bangalore. The book has 13 chapters and the entire work presented in the chapters is based on research carried out over past three years. The chapters are designed with number of coloured illustrations, figures and tables. The book will be highly beneficial to academicians as well as industrial professionals working in the mentioned areas.
Microscale and Nanoscale Heat Transfer
Author: C.B. Sobhan
Publisher: CRC Press
ISBN: 1420007114
Category : Science
Languages : en
Pages : 434
Book Description
Through analyses, experimental results, and worked-out numerical examples, Microscale and Nanoscale Heat Transfer: Fundamentals and Engineering Applications explores the methods and observations of thermophysical phenomena in size-affected domains. Compiling the most relevant findings from the literature, along with results from their own re
Publisher: CRC Press
ISBN: 1420007114
Category : Science
Languages : en
Pages : 434
Book Description
Through analyses, experimental results, and worked-out numerical examples, Microscale and Nanoscale Heat Transfer: Fundamentals and Engineering Applications explores the methods and observations of thermophysical phenomena in size-affected domains. Compiling the most relevant findings from the literature, along with results from their own re
Micro- and Nanoscale Phenomena in Tribology
Author: Yip-Wah Chung
Publisher: CRC Press
ISBN: 1439839220
Category : Technology & Engineering
Languages : en
Pages : 222
Book Description
Drawn from presentations at a recent National Science Foundation Summer Institute on Nanomechanics, Nanomaterials, and Micro/Nanomanufacturing, Micro- and Nanoscale Phenomena in Tribology explores the convergence of the multiple science and engineering disciplines involved in tribology and the connection from the macro to nano world. Written by specialists from computation, materials science, mechanical engineering, surface physics, and chemistry, each chapter provides up-to-date coverage of both basic and advanced topics and includes extensive references for further study. After discussing the evolution of tribology in the micro and nano world, the book describes contact conditions spanning between macroscale and nanoscale contacts. It presents an overview of fundamental continuum treatments of interfacial contact and lubrication under a wide range of conditions, including novel advances in contact simulation. It also gives a thorough account of the nature of surface energies and forces in nanostructures as well as adhesion in dry and wet environments. The book then explains how to perform friction measurements at the nanoscale and interpret friction data before demonstrating how micro- and nanotextured surfaces affect adhesion, friction, and wetting. The final chapters emphasize the importance of surface chemistry and molecular dynamics simulation in tribology. With numerous examples and figures throughout, this volume presents a thorough account of important advancements in tribology that offer insight into micro- and nanoscale phenomena. By enabling a better understanding of fundamental micro- and nanoscale interactions, the book helps readers effectively design and fabricate durable tribological components for various engineering and biological systems.
Publisher: CRC Press
ISBN: 1439839220
Category : Technology & Engineering
Languages : en
Pages : 222
Book Description
Drawn from presentations at a recent National Science Foundation Summer Institute on Nanomechanics, Nanomaterials, and Micro/Nanomanufacturing, Micro- and Nanoscale Phenomena in Tribology explores the convergence of the multiple science and engineering disciplines involved in tribology and the connection from the macro to nano world. Written by specialists from computation, materials science, mechanical engineering, surface physics, and chemistry, each chapter provides up-to-date coverage of both basic and advanced topics and includes extensive references for further study. After discussing the evolution of tribology in the micro and nano world, the book describes contact conditions spanning between macroscale and nanoscale contacts. It presents an overview of fundamental continuum treatments of interfacial contact and lubrication under a wide range of conditions, including novel advances in contact simulation. It also gives a thorough account of the nature of surface energies and forces in nanostructures as well as adhesion in dry and wet environments. The book then explains how to perform friction measurements at the nanoscale and interpret friction data before demonstrating how micro- and nanotextured surfaces affect adhesion, friction, and wetting. The final chapters emphasize the importance of surface chemistry and molecular dynamics simulation in tribology. With numerous examples and figures throughout, this volume presents a thorough account of important advancements in tribology that offer insight into micro- and nanoscale phenomena. By enabling a better understanding of fundamental micro- and nanoscale interactions, the book helps readers effectively design and fabricate durable tribological components for various engineering and biological systems.
Modeling Multiphase Materials Processes
Author: Manabu Iguchi
Publisher: Springer Science & Business Media
ISBN: 1441974792
Category : Technology & Engineering
Languages : en
Pages : 416
Book Description
Modeling Multiphase Materials Processes: Gas-Liquid Systems describes the methodology and application of physical and mathematical modeling to multi-phase flow phenomena in materials processing. The book focuses on systems involving gas-liquid interaction, the most prevalent in current metallurgical processes. The performance characteristics of these processes are largely dependent on transport phenomena. This volume covers the inherent characteristics that complicate the modeling of transport phenomena in such systems, including complex multiphase structure, intense turbulence, opacity of fluid, high temperature, coupled heat and mass transfer, chemical reactions in some cases, and poor wettability of the reactor walls. Also discussed are: solutions based on experimental and numerical modeling of bubbling jet systems, recent advances in the modeling of nanoscale multi-phase phenomena and multiphase flows in micro-scale and nano-scale channels and reactors. Modeling Multiphase Materials Processes: Gas-Liquid Systems will prove a valuable reference for researchers and engineers working in mathematical modeling and materials processing.
Publisher: Springer Science & Business Media
ISBN: 1441974792
Category : Technology & Engineering
Languages : en
Pages : 416
Book Description
Modeling Multiphase Materials Processes: Gas-Liquid Systems describes the methodology and application of physical and mathematical modeling to multi-phase flow phenomena in materials processing. The book focuses on systems involving gas-liquid interaction, the most prevalent in current metallurgical processes. The performance characteristics of these processes are largely dependent on transport phenomena. This volume covers the inherent characteristics that complicate the modeling of transport phenomena in such systems, including complex multiphase structure, intense turbulence, opacity of fluid, high temperature, coupled heat and mass transfer, chemical reactions in some cases, and poor wettability of the reactor walls. Also discussed are: solutions based on experimental and numerical modeling of bubbling jet systems, recent advances in the modeling of nanoscale multi-phase phenomena and multiphase flows in micro-scale and nano-scale channels and reactors. Modeling Multiphase Materials Processes: Gas-Liquid Systems will prove a valuable reference for researchers and engineers working in mathematical modeling and materials processing.
Nanofluidics
Author: Zhigang Li
Publisher: CRC Press
ISBN: 1351969579
Category : Science
Languages : en
Pages : 429
Book Description
This book provides an introduction to nanofluidics in a simple manner and can be easily followed by senior undergraduate students, graduate students, and other researchers who have some background in fluid mechanics. The book covers the main topics about the fundamentals of nanofluidics and how it differs from classic fluid mechanics. It also describes the methodologies of nanofluidics, including numerical approaches, e.g., molecular dynamics simulation and experimental techniques. Fundamental physics and new phenomena in nanofluidics are the major concerns of this book. The author goes on to discuss nanocofinements and the parameters that affect the fluid dynamics at the nanoscale and make flow analysis complex. These parameters accommodate rich, new flow phenomena that may not be observed at the macro- and microscale. Although not all of the new phenomena will find widespread applications, the physics underlying these new phenomena may offer insights for other fields. This is one of the reasons why this book emphasizes the mechanisms of various flow fashions. Explores the unique characteristics of nanoscale flows and related properties Reviews the latest research of nanoscale ion transport and its applications Discusses the fluid flows in nanoconfinements in a unique manner based on the author's original research Incorporates important applications of nanofluidics throughout.
Publisher: CRC Press
ISBN: 1351969579
Category : Science
Languages : en
Pages : 429
Book Description
This book provides an introduction to nanofluidics in a simple manner and can be easily followed by senior undergraduate students, graduate students, and other researchers who have some background in fluid mechanics. The book covers the main topics about the fundamentals of nanofluidics and how it differs from classic fluid mechanics. It also describes the methodologies of nanofluidics, including numerical approaches, e.g., molecular dynamics simulation and experimental techniques. Fundamental physics and new phenomena in nanofluidics are the major concerns of this book. The author goes on to discuss nanocofinements and the parameters that affect the fluid dynamics at the nanoscale and make flow analysis complex. These parameters accommodate rich, new flow phenomena that may not be observed at the macro- and microscale. Although not all of the new phenomena will find widespread applications, the physics underlying these new phenomena may offer insights for other fields. This is one of the reasons why this book emphasizes the mechanisms of various flow fashions. Explores the unique characteristics of nanoscale flows and related properties Reviews the latest research of nanoscale ion transport and its applications Discusses the fluid flows in nanoconfinements in a unique manner based on the author's original research Incorporates important applications of nanofluidics throughout.
Multiscale Modelling and Optimisation of Materials and Structures
Author: Tadeusz Burczynski
Publisher: John Wiley & Sons
ISBN: 1118536452
Category : Technology & Engineering
Languages : en
Pages : 440
Book Description
Addresses the very topical, crucial and original subject of parameter identification and optimization within multiscale modeling methods Multiscale Modelling and Optimization of Materials and Structures presents an important and challenging area of research that enables the design of new materials and structures with better quality, strength and performance parameters as well as the creation of reliable models that take into account structural, material and topological properties at different scales. The authors’ approach is four-fold; 1) the basic principles of micro and nano scale modeling techniques; 2) the connection of micro and/or nano scale models with macro simulation software; 3) optimization development in the framework of multiscale engineering and the solution of identification problems; 4) the computer science techniques used in this model and advice for scientists interested in developing their own models and software for multiscale analysis and optimization. The authors present several approaches such as the bridging and homogenization methods, as well as the general formulation of complex optimization and identification problems in multiscale modelling. They apply global optimization algorithms based on robust bioinspired algorithms, proposing parallel and multi-subpopulation approaches in order to speed-up computations, and discuss several numerical examples of multiscale modeling, optimization and identification of composite and functionally graded engineering materials and bone tissues. Multiscale Modelling and Optimization of Materials and Structures is thereby a valuable source of information for young scientists and students looking to develop their own models, write their own computer programs and implement them into simulation systems. Describes micro and nano scale models developed by the authors along with case studies of analysis and optimization Discusses the problems of computing costs, efficiency of information transfer, effective use of the computer memory and several other aspects of development of multiscale models Includes real physical, chemical and experimental studies with modern experimental techniques Provides a valuable source of information for young scientists and students looking to develop their own models, write their own computer programs, and implement them into simulation systems.
Publisher: John Wiley & Sons
ISBN: 1118536452
Category : Technology & Engineering
Languages : en
Pages : 440
Book Description
Addresses the very topical, crucial and original subject of parameter identification and optimization within multiscale modeling methods Multiscale Modelling and Optimization of Materials and Structures presents an important and challenging area of research that enables the design of new materials and structures with better quality, strength and performance parameters as well as the creation of reliable models that take into account structural, material and topological properties at different scales. The authors’ approach is four-fold; 1) the basic principles of micro and nano scale modeling techniques; 2) the connection of micro and/or nano scale models with macro simulation software; 3) optimization development in the framework of multiscale engineering and the solution of identification problems; 4) the computer science techniques used in this model and advice for scientists interested in developing their own models and software for multiscale analysis and optimization. The authors present several approaches such as the bridging and homogenization methods, as well as the general formulation of complex optimization and identification problems in multiscale modelling. They apply global optimization algorithms based on robust bioinspired algorithms, proposing parallel and multi-subpopulation approaches in order to speed-up computations, and discuss several numerical examples of multiscale modeling, optimization and identification of composite and functionally graded engineering materials and bone tissues. Multiscale Modelling and Optimization of Materials and Structures is thereby a valuable source of information for young scientists and students looking to develop their own models, write their own computer programs and implement them into simulation systems. Describes micro and nano scale models developed by the authors along with case studies of analysis and optimization Discusses the problems of computing costs, efficiency of information transfer, effective use of the computer memory and several other aspects of development of multiscale models Includes real physical, chemical and experimental studies with modern experimental techniques Provides a valuable source of information for young scientists and students looking to develop their own models, write their own computer programs, and implement them into simulation systems.
Nanomaterials
Author: K.T. Ramesh
Publisher: Springer Science & Business Media
ISBN: 038709783X
Category : Science
Languages : en
Pages : 343
Book Description
This book grew out of my desire to understand the mechanics of nanomaterials, and to be able to rationalize in my own mind the variety of topics on which the people around me were doing research at the time. The ?eld of nanomaterials has been growing rapidly since the early 1990s. I- tially, the ?eld was populated mostly by researchers working in the ?elds of synt- sis and processing. These scientists were able to make new materials much faster than the rest of us could develop ways of looking at them (or understanding them). However, a con?uence of interests and capabilities in the 1990s led to the exp- sive growth of papers in the characterization and modeling parts of the ?eld. That con?uence came from three primary directions: the rapid growth in our ability to make nanomaterials, a relatively newfound ability to characterize the nanomate- als at the appropriate length and time scales, and the rapid growth in our ability to model nanomaterials at atomistic and molecular scales. Simultaneously, the commercial potential of nanotechnology has become app- ent to most high-technology industries, as well as to some industries that are tra- tionally not viewed as high-technology (such as textiles). Much of the rapid growth came through the inventions of physicists and chemists who were able to develop nanotechnology products (nanomaterials) through a dizzying array of routes, and who began to interface directly with biological entities at the nanometer scale. That growth continues unabated.
Publisher: Springer Science & Business Media
ISBN: 038709783X
Category : Science
Languages : en
Pages : 343
Book Description
This book grew out of my desire to understand the mechanics of nanomaterials, and to be able to rationalize in my own mind the variety of topics on which the people around me were doing research at the time. The ?eld of nanomaterials has been growing rapidly since the early 1990s. I- tially, the ?eld was populated mostly by researchers working in the ?elds of synt- sis and processing. These scientists were able to make new materials much faster than the rest of us could develop ways of looking at them (or understanding them). However, a con?uence of interests and capabilities in the 1990s led to the exp- sive growth of papers in the characterization and modeling parts of the ?eld. That con?uence came from three primary directions: the rapid growth in our ability to make nanomaterials, a relatively newfound ability to characterize the nanomate- als at the appropriate length and time scales, and the rapid growth in our ability to model nanomaterials at atomistic and molecular scales. Simultaneously, the commercial potential of nanotechnology has become app- ent to most high-technology industries, as well as to some industries that are tra- tionally not viewed as high-technology (such as textiles). Much of the rapid growth came through the inventions of physicists and chemists who were able to develop nanotechnology products (nanomaterials) through a dizzying array of routes, and who began to interface directly with biological entities at the nanometer scale. That growth continues unabated.
Modeling MEMS and NEMS
Author: John A. Pelesko
Publisher: CRC Press
ISBN: 1420035290
Category : Mathematics
Languages : en
Pages : 382
Book Description
Designing small structures necessitates an a priori understanding of various device behaviors. The way to gain such understanding is to construct, analyze, and interpret the proper mathematical model. Through such models, Modeling MEMS and NEMS illuminates microscale and nanoscale phenomena, thereby facilitating the design and optimization o
Publisher: CRC Press
ISBN: 1420035290
Category : Mathematics
Languages : en
Pages : 382
Book Description
Designing small structures necessitates an a priori understanding of various device behaviors. The way to gain such understanding is to construct, analyze, and interpret the proper mathematical model. Through such models, Modeling MEMS and NEMS illuminates microscale and nanoscale phenomena, thereby facilitating the design and optimization o
Liquid Vapor Phase Change Phenomena
Author: Van P. Carey
Publisher: CRC Press
ISBN: 1351434861
Category : Science
Languages : en
Pages : 732
Book Description
Liquid-Vapor Phase-Change Phenomena presents the basic thermophysics and transport principles that underlie the mechanisms of condensation and vaporization processes. The text has been thoroughly updated to reflect recent innovations in research and to strengthen the fundamental focus of the first edition. Starting with an integrated presentation of the nonequilibrium thermodynamics and interfacial phenomena associated with vaporization and condensation, coverage follows of the heat transfer and fluid flow mechanisms in such processes. The second edition includes significant new material on the nanoscale and microscale thermophysics of boiling and condensation phenomena and the use of advanced computational tools to create new models of phase-change events. The importance of basic phenomena to a wide variety of applications is emphasized and illustrated throughout using examples and problems. Suitable for senior undergraduate and first-year graduate students in mechanical or chemical engineering, the book can also be a helpful reference for practicing engineers or scientists studying the fundamental physics of nucleation, boiling and condensation.
Publisher: CRC Press
ISBN: 1351434861
Category : Science
Languages : en
Pages : 732
Book Description
Liquid-Vapor Phase-Change Phenomena presents the basic thermophysics and transport principles that underlie the mechanisms of condensation and vaporization processes. The text has been thoroughly updated to reflect recent innovations in research and to strengthen the fundamental focus of the first edition. Starting with an integrated presentation of the nonequilibrium thermodynamics and interfacial phenomena associated with vaporization and condensation, coverage follows of the heat transfer and fluid flow mechanisms in such processes. The second edition includes significant new material on the nanoscale and microscale thermophysics of boiling and condensation phenomena and the use of advanced computational tools to create new models of phase-change events. The importance of basic phenomena to a wide variety of applications is emphasized and illustrated throughout using examples and problems. Suitable for senior undergraduate and first-year graduate students in mechanical or chemical engineering, the book can also be a helpful reference for practicing engineers or scientists studying the fundamental physics of nucleation, boiling and condensation.
Photochemical Processes In Continuous-flow Reactors: From Engineering Principles To Chemical Applications
Author: Timothy Noel
Publisher: World Scientific
ISBN: 1786342200
Category : Science
Languages : en
Pages : 282
Book Description
Continuous-flow photochemistry is an expanding field within chemistry. It unites the mass transfer enhancement of flow chemistry with the high energy field density of microscale geometries. Moreover, it provides means to scale photochemical reactions efficiently.This book gives an overview of both technological and chemical aspects associated with photochemical processes in microreactors. It provides analysis, the first of its kind, of these new technologies developed within the field of photochemical processes, with a description and case studies of practical implementation. It specifically looks at:By providing a deeper understanding of underlying concepts, coupled with numerous examples, this book is an essential reference for chemistry students, researchers and professionals working on photochemistry, photoredox catalysis, flow chemistry, process chemistry and reactor engineering.
Publisher: World Scientific
ISBN: 1786342200
Category : Science
Languages : en
Pages : 282
Book Description
Continuous-flow photochemistry is an expanding field within chemistry. It unites the mass transfer enhancement of flow chemistry with the high energy field density of microscale geometries. Moreover, it provides means to scale photochemical reactions efficiently.This book gives an overview of both technological and chemical aspects associated with photochemical processes in microreactors. It provides analysis, the first of its kind, of these new technologies developed within the field of photochemical processes, with a description and case studies of practical implementation. It specifically looks at:By providing a deeper understanding of underlying concepts, coupled with numerous examples, this book is an essential reference for chemistry students, researchers and professionals working on photochemistry, photoredox catalysis, flow chemistry, process chemistry and reactor engineering.