Author: Philippe Serp
Publisher: John Wiley & Sons
ISBN: 3527656898
Category : Science
Languages : en
Pages : 741
Book Description
Nanocatalysis has emerged as a field at the interface between homogeneous and heterogeneous catalysis and offers unique solutions to the demanding requirements for catalyst improvement. Heterogeneous catalysis represents one of the oldest commercial applications of nanoscience and nanoparticles of metals, semiconductors, oxides, and other compounds have been widely used for important chemical reactions. The main focus of this fi eld is the development of well-defined catalysts, which may include both metal nanoparticles and a nanomaterial as the support. These nanocatalysts should display the benefits of both homogenous and heterogeneous catalysts, such as high efficiency and selectivity, stability and easy recovery/recycling. The concept of nanocatalysis is outlined in this book and, in particular, it provides a comprehensive overview of the science of colloidal nanoparticles. A broad range of topics, from the fundamentals to applications in catalysis, are covered, without excluding micelles, nanoparticles in ionic liquids, dendrimers, nanotubes, and nanooxides, as well as modeling, and the characterization of nanocatalysts, making it an indispensable reference for both researchers at universities and professionals in industry.
Nanomaterials in Catalysis
Author: Philippe Serp
Publisher: John Wiley & Sons
ISBN: 3527656898
Category : Science
Languages : en
Pages : 741
Book Description
Nanocatalysis has emerged as a field at the interface between homogeneous and heterogeneous catalysis and offers unique solutions to the demanding requirements for catalyst improvement. Heterogeneous catalysis represents one of the oldest commercial applications of nanoscience and nanoparticles of metals, semiconductors, oxides, and other compounds have been widely used for important chemical reactions. The main focus of this fi eld is the development of well-defined catalysts, which may include both metal nanoparticles and a nanomaterial as the support. These nanocatalysts should display the benefits of both homogenous and heterogeneous catalysts, such as high efficiency and selectivity, stability and easy recovery/recycling. The concept of nanocatalysis is outlined in this book and, in particular, it provides a comprehensive overview of the science of colloidal nanoparticles. A broad range of topics, from the fundamentals to applications in catalysis, are covered, without excluding micelles, nanoparticles in ionic liquids, dendrimers, nanotubes, and nanooxides, as well as modeling, and the characterization of nanocatalysts, making it an indispensable reference for both researchers at universities and professionals in industry.
Publisher: John Wiley & Sons
ISBN: 3527656898
Category : Science
Languages : en
Pages : 741
Book Description
Nanocatalysis has emerged as a field at the interface between homogeneous and heterogeneous catalysis and offers unique solutions to the demanding requirements for catalyst improvement. Heterogeneous catalysis represents one of the oldest commercial applications of nanoscience and nanoparticles of metals, semiconductors, oxides, and other compounds have been widely used for important chemical reactions. The main focus of this fi eld is the development of well-defined catalysts, which may include both metal nanoparticles and a nanomaterial as the support. These nanocatalysts should display the benefits of both homogenous and heterogeneous catalysts, such as high efficiency and selectivity, stability and easy recovery/recycling. The concept of nanocatalysis is outlined in this book and, in particular, it provides a comprehensive overview of the science of colloidal nanoparticles. A broad range of topics, from the fundamentals to applications in catalysis, are covered, without excluding micelles, nanoparticles in ionic liquids, dendrimers, nanotubes, and nanooxides, as well as modeling, and the characterization of nanocatalysts, making it an indispensable reference for both researchers at universities and professionals in industry.
Nanoparticles in Catalysis
Author: Karine Philippot
Publisher: John Wiley & Sons
ISBN: 3527346074
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
Nanoparticles in Catalysis Discover an essential overview of recent advances and trends in nanoparticle catalysis Catalysis in the presence of metal nanoparticles is an important and rapidly developing research field at the frontier of homogeneous and heterogeneous catalysis. In Nanoparticles in Catalysis, accomplished chemists and authors Karine Philippot and Alain Roucoux deliver a comprehensive guide to the key aspects of nanoparticle catalysis, ranging from synthesis, activation methodology, characterization, and theoretical modeling, to application in important catalytic reactions, like hydrogen production and biomass conversion. The book offers readers a review of modern and efficient tools for the synthesis of nanoparticles in solution or onto supports. It emphasizes the application of metal nanoparticles in important catalytic reactions and includes chapters on activation methodology and supported nanoclusters. Written by an international team of leading voices in the field, Nanoparticles in Catalysis is an indispensable resource for researchers and professionals in academia and industry alike. Readers will also benefit from the inclusion of: A thorough introduction to New Trends in the Design of Metal Nanoparticles and Derived Nanomaterials for Catalysis An exploration of Dynamic Catalysis and the Interface Between Molecular and Heterogeneous Catalysts A practical discussion of Metal Nanoparticles in Water: A Relevant Toolbox for Green Catalysis Organometallic Metal Nanoparticles for Catalysis A concise treatment of the opportunities and challenges of CO2 Hydrogenation to Oxygenated Chemicals Over Supported Nanoparticle Catalysts Perfect for catalytic, organic, inorganic, and physical chemists, Nanoparticles in Catalysis will also earn a place in the libraries of chemists working with organometallics and materials scientists seeking a one-stop resource with expert knowledge on the synthesis and characterization of nanoparticle catalysis.
Publisher: John Wiley & Sons
ISBN: 3527346074
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
Nanoparticles in Catalysis Discover an essential overview of recent advances and trends in nanoparticle catalysis Catalysis in the presence of metal nanoparticles is an important and rapidly developing research field at the frontier of homogeneous and heterogeneous catalysis. In Nanoparticles in Catalysis, accomplished chemists and authors Karine Philippot and Alain Roucoux deliver a comprehensive guide to the key aspects of nanoparticle catalysis, ranging from synthesis, activation methodology, characterization, and theoretical modeling, to application in important catalytic reactions, like hydrogen production and biomass conversion. The book offers readers a review of modern and efficient tools for the synthesis of nanoparticles in solution or onto supports. It emphasizes the application of metal nanoparticles in important catalytic reactions and includes chapters on activation methodology and supported nanoclusters. Written by an international team of leading voices in the field, Nanoparticles in Catalysis is an indispensable resource for researchers and professionals in academia and industry alike. Readers will also benefit from the inclusion of: A thorough introduction to New Trends in the Design of Metal Nanoparticles and Derived Nanomaterials for Catalysis An exploration of Dynamic Catalysis and the Interface Between Molecular and Heterogeneous Catalysts A practical discussion of Metal Nanoparticles in Water: A Relevant Toolbox for Green Catalysis Organometallic Metal Nanoparticles for Catalysis A concise treatment of the opportunities and challenges of CO2 Hydrogenation to Oxygenated Chemicals Over Supported Nanoparticle Catalysts Perfect for catalytic, organic, inorganic, and physical chemists, Nanoparticles in Catalysis will also earn a place in the libraries of chemists working with organometallics and materials scientists seeking a one-stop resource with expert knowledge on the synthesis and characterization of nanoparticle catalysis.
Advanced Nanomaterials for Catalysis and Energy
Author: Vladislav A. Sadykov
Publisher: Elsevier
ISBN: 012814808X
Category : Technology & Engineering
Languages : en
Pages : 590
Book Description
Advanced Nanomaterials for Catalysis and Energy: Synthesis, Characterization and Applications outlines new approaches to the synthesis of nanomaterials (synthesis in flow conditions, laser electrodispersion of single metals or alloys on carbon or oxide supports, mechanochemistry, sol-gel routes, etc.) to provide systems with a narrow particle size distribution, controlled metal-support interaction and nanocomposites with uniform spatial distribution of domains of different phases, even in dense sintered materials. Methods for characterization of real structure and surface properties of nanomaterials are discussed, including synchrotron radiation diffraction and X-ray photoelectron spectroscopy studies, neutronography, transmission/scanning electron microscopy with elemental analysis, and more. The book covers the effect of nanosystems' composition, bulk and surface properties, metal-support interaction, particle size and morphology, deposition density, etc. on their functional properties (transport features, catalytic activity and reaction mechanism). Finally, it includes examples of various developed nanostructured solid electrolytes and mixed ionic-electronic conductors as materials in solid oxide fuel cells and asymmetric supported membranes for oxygen and hydrogen separation. - Outlines synthetic and characterization methods for nanocatalysts - Relates nanocatalysts' properties to their specific applications - Proposes optimization methods aiming at specific applications
Publisher: Elsevier
ISBN: 012814808X
Category : Technology & Engineering
Languages : en
Pages : 590
Book Description
Advanced Nanomaterials for Catalysis and Energy: Synthesis, Characterization and Applications outlines new approaches to the synthesis of nanomaterials (synthesis in flow conditions, laser electrodispersion of single metals or alloys on carbon or oxide supports, mechanochemistry, sol-gel routes, etc.) to provide systems with a narrow particle size distribution, controlled metal-support interaction and nanocomposites with uniform spatial distribution of domains of different phases, even in dense sintered materials. Methods for characterization of real structure and surface properties of nanomaterials are discussed, including synchrotron radiation diffraction and X-ray photoelectron spectroscopy studies, neutronography, transmission/scanning electron microscopy with elemental analysis, and more. The book covers the effect of nanosystems' composition, bulk and surface properties, metal-support interaction, particle size and morphology, deposition density, etc. on their functional properties (transport features, catalytic activity and reaction mechanism). Finally, it includes examples of various developed nanostructured solid electrolytes and mixed ionic-electronic conductors as materials in solid oxide fuel cells and asymmetric supported membranes for oxygen and hydrogen separation. - Outlines synthetic and characterization methods for nanocatalysts - Relates nanocatalysts' properties to their specific applications - Proposes optimization methods aiming at specific applications
Nanostructured Materials for Engineering Applications
Author: Carlos P. Bergmann
Publisher: Springer Science & Business Media
ISBN: 3642191312
Category : Technology & Engineering
Languages : en
Pages : 174
Book Description
This book gives an introduction to nanostructured materials and guides the reader through their different engineering applications. It addresses the special phenomena and potentials involved in the applications without going into too much scientific detail of the physics and chemistry involved, which makes the reading interesting for beginners in the field. Materials for different applications in engineering are described, such as those used in opto-electronics, energy, tribology, bio-applications, catalysis, reinforcement and many more. In each application chapter, the reader will learn about the phenomena involved in the application, the nanostructured materials used in the field and their processing, besides finding some practical examples of their use in laboratories and in industry.The clear language and the application-oriented perspective of the book makes it suitable for both engineers and students who want to learn about applications of nanostructured materials in Engineering.
Publisher: Springer Science & Business Media
ISBN: 3642191312
Category : Technology & Engineering
Languages : en
Pages : 174
Book Description
This book gives an introduction to nanostructured materials and guides the reader through their different engineering applications. It addresses the special phenomena and potentials involved in the applications without going into too much scientific detail of the physics and chemistry involved, which makes the reading interesting for beginners in the field. Materials for different applications in engineering are described, such as those used in opto-electronics, energy, tribology, bio-applications, catalysis, reinforcement and many more. In each application chapter, the reader will learn about the phenomena involved in the application, the nanostructured materials used in the field and their processing, besides finding some practical examples of their use in laboratories and in industry.The clear language and the application-oriented perspective of the book makes it suitable for both engineers and students who want to learn about applications of nanostructured materials in Engineering.
Nanoparticles and Catalysis
Author: Didier Astruc
Publisher: John Wiley & Sons
ISBN: 3527621334
Category : Science
Languages : en
Pages : 663
Book Description
Written by international experts, this monograph combines two of the most important aspects of modern chemistry, presenting the latest knowledge on these environmental friendly applications. This result is a comprehensive overview of the application of nanoparticles in catalysis, focusing on synthesis and the most important reaction types, providing all the information needed by catalytic, organic and solid state chemists, as well as those working with or on organometallics, materials scientists, and chemists in industry.
Publisher: John Wiley & Sons
ISBN: 3527621334
Category : Science
Languages : en
Pages : 663
Book Description
Written by international experts, this monograph combines two of the most important aspects of modern chemistry, presenting the latest knowledge on these environmental friendly applications. This result is a comprehensive overview of the application of nanoparticles in catalysis, focusing on synthesis and the most important reaction types, providing all the information needed by catalytic, organic and solid state chemists, as well as those working with or on organometallics, materials scientists, and chemists in industry.
Magnetic Nanomaterials
Author: Stefan H Bossmann
Publisher: Royal Society of Chemistry
ISBN: 178262788X
Category : Science
Languages : en
Pages : 281
Book Description
Details the frontier of magnetic nanotechnology from the persepctive of scientists, engineers and physicians that have shaped this unique and highly collaborative field of research.
Publisher: Royal Society of Chemistry
ISBN: 178262788X
Category : Science
Languages : en
Pages : 281
Book Description
Details the frontier of magnetic nanotechnology from the persepctive of scientists, engineers and physicians that have shaped this unique and highly collaborative field of research.
Nanomaterials for Fuel Cell Catalysis
Author: Kenneth I. Ozoemena
Publisher: Springer
ISBN: 3319299301
Category : Science
Languages : en
Pages : 583
Book Description
Global experts provide an authoritative source of information on the use of electrochemical fuel cells, and in particular discuss the use of nanomaterials to enhance the performance of existing energy systems. The book covers the state of the art in the design, preparation, and engineering of nanoscale functional materials as effective catalysts for fuel cell chemistry, highlights recent progress in electrocatalysis at both fuel cell anode and cathode, and details perspectives and challenges in future research.
Publisher: Springer
ISBN: 3319299301
Category : Science
Languages : en
Pages : 583
Book Description
Global experts provide an authoritative source of information on the use of electrochemical fuel cells, and in particular discuss the use of nanomaterials to enhance the performance of existing energy systems. The book covers the state of the art in the design, preparation, and engineering of nanoscale functional materials as effective catalysts for fuel cell chemistry, highlights recent progress in electrocatalysis at both fuel cell anode and cathode, and details perspectives and challenges in future research.
Metal Nanoparticles for Catalysis
Author: Franklin Tao
Publisher: Royal Society of Chemistry
ISBN: 1782621032
Category : Technology & Engineering
Languages : en
Pages : 285
Book Description
Catalysis is a central topic in chemical transformation and energy conversion. Thanks to the spectacular achievements of colloidal chemistry and the synthesis of nanomaterials over the last two decades, there have also been significant advances in nanoparticle catalysis. Catalysis on different metal nanostructures with well-defined structures and composition has been extensively studied. Metal nanocrystals synthesized with colloidal chemistry exhibit different catalytic performances in contrast to metal nanoparticles prepared with impregnation or deposition precipitation. Additionally, theoretical approaches in predicting catalysis performance and understanding catalytic mechanism on these metal nanocatalysts have made significant progress. Metal Nanoparticles for Catalysis is a comprehensive text on catalysis on Nanoparticles, looking at both their synthesis and applications. Chapter topics include nanoreactor catalysis; Pd nanoparticles in C-C coupling reactions; metal salt-based gold nanocatalysts; theoretical insights into metal nanocatalysts; and nanoparticle mediated clock reaction. This book bridges the gap between nanomaterials synthesis and characterization, and catalysis. As such, this text will be a valuable resource for postgraduate students and researchers in these exciting fields.
Publisher: Royal Society of Chemistry
ISBN: 1782621032
Category : Technology & Engineering
Languages : en
Pages : 285
Book Description
Catalysis is a central topic in chemical transformation and energy conversion. Thanks to the spectacular achievements of colloidal chemistry and the synthesis of nanomaterials over the last two decades, there have also been significant advances in nanoparticle catalysis. Catalysis on different metal nanostructures with well-defined structures and composition has been extensively studied. Metal nanocrystals synthesized with colloidal chemistry exhibit different catalytic performances in contrast to metal nanoparticles prepared with impregnation or deposition precipitation. Additionally, theoretical approaches in predicting catalysis performance and understanding catalytic mechanism on these metal nanocatalysts have made significant progress. Metal Nanoparticles for Catalysis is a comprehensive text on catalysis on Nanoparticles, looking at both their synthesis and applications. Chapter topics include nanoreactor catalysis; Pd nanoparticles in C-C coupling reactions; metal salt-based gold nanocatalysts; theoretical insights into metal nanocatalysts; and nanoparticle mediated clock reaction. This book bridges the gap between nanomaterials synthesis and characterization, and catalysis. As such, this text will be a valuable resource for postgraduate students and researchers in these exciting fields.
XAFS Techniques for Catalysts, Nanomaterials, and Surfaces
Author: Yasuhiro Iwasawa
Publisher: Springer
ISBN: 3319438662
Category : Science
Languages : en
Pages : 545
Book Description
This book is a comprehensive, theoretical, practical, and thorough guide to XAFS spectroscopy. The book addresses XAFS fundamentals such as experiments, theory and data analysis, advanced XAFS methods such as operando XAFS, time-resolved XAFS, spatially resolved XAFS, total-reflection XAFS, high energy resolution XAFS, and practical applications to a variety of catalysts, nanomaterials and surfaces. This book is accessible to a broad audience in academia and industry, and will be a useful guide for researchers entering the subject and graduate students in a wide variety of disciplines.
Publisher: Springer
ISBN: 3319438662
Category : Science
Languages : en
Pages : 545
Book Description
This book is a comprehensive, theoretical, practical, and thorough guide to XAFS spectroscopy. The book addresses XAFS fundamentals such as experiments, theory and data analysis, advanced XAFS methods such as operando XAFS, time-resolved XAFS, spatially resolved XAFS, total-reflection XAFS, high energy resolution XAFS, and practical applications to a variety of catalysts, nanomaterials and surfaces. This book is accessible to a broad audience in academia and industry, and will be a useful guide for researchers entering the subject and graduate students in a wide variety of disciplines.
Photocatalysis Using 2D Nanomaterials
Author: Yufei Zhao
Publisher: Royal Society of Chemistry
ISBN: 1839164638
Category : Science
Languages : en
Pages : 319
Book Description
Two-dimensional (2D) materials for photocatalytic applications have attracted attention in recent years due to their unique thickness-dependent physiochemical properties. 2D materials offer enhanced functionality over traditional three-dimensional (3D) photocatalysts due to modified chemical composition and electronic structures, as well as abundant surface active sites. This book reviews the applications of 2D-related nano-materials in solar-driven catalysis, providing an up-to-date introduction to the design and use of 2D-related photo(electro)catalysts. This includes not only application areas such as fine chemicals synthesis, water splitting, CO2 reduction, and N2 fixation, but also catalyst design and preparation. Some typical 2D and 2D-related materials (such as layered double hydroxides (LDHs), layered metal oxides, transition metal dichalcogenide (TMDs), metal–organic frameworks (MOFs), graphene, g-C3N4, etc.) are classified, and relationships between structure and property are demonstrated, with emphasis on how to improve 2D-related materials performance for practical applications. While the focus of this book will primarily be on experimental studies, computational results will serve as a necessary reference. With chapters written by expert researchers in their fields, Photocatalysis Using 2D Nanomaterials will provide advanced undergraduates, postgraduates and other researchers convenient introductions to these topics.
Publisher: Royal Society of Chemistry
ISBN: 1839164638
Category : Science
Languages : en
Pages : 319
Book Description
Two-dimensional (2D) materials for photocatalytic applications have attracted attention in recent years due to their unique thickness-dependent physiochemical properties. 2D materials offer enhanced functionality over traditional three-dimensional (3D) photocatalysts due to modified chemical composition and electronic structures, as well as abundant surface active sites. This book reviews the applications of 2D-related nano-materials in solar-driven catalysis, providing an up-to-date introduction to the design and use of 2D-related photo(electro)catalysts. This includes not only application areas such as fine chemicals synthesis, water splitting, CO2 reduction, and N2 fixation, but also catalyst design and preparation. Some typical 2D and 2D-related materials (such as layered double hydroxides (LDHs), layered metal oxides, transition metal dichalcogenide (TMDs), metal–organic frameworks (MOFs), graphene, g-C3N4, etc.) are classified, and relationships between structure and property are demonstrated, with emphasis on how to improve 2D-related materials performance for practical applications. While the focus of this book will primarily be on experimental studies, computational results will serve as a necessary reference. With chapters written by expert researchers in their fields, Photocatalysis Using 2D Nanomaterials will provide advanced undergraduates, postgraduates and other researchers convenient introductions to these topics.