Author: D Bucknall
Publisher: Elsevier
ISBN: 1845690907
Category : Science
Languages : en
Pages : 424
Book Description
Techniques such as surface patterning have facilitated the emergence of advanced polymers with applications in areas such as microelectronics. Surface patterning of polymers has conventionally been undertaken by optical lithography. However, a new generation of nanolithographic and patterning techniques has made it possible to develop complex patterns at the nanoscale. Non-conventional lithography and patterning summarises this new range of techniques and their industrial applications.A number of chapters look at ways of forming and modifying surfaces for patterning. These are complemented by chapters on particular patterning techniques such as soft lithography, ion beam patterning, the use of nanostencils, photolithography and inkjet printing. The book also discusses prototyping and the manufacture of particular devices.With its distinguished international team of contributors, Non-conventional lithography and patterning is a standard reference for both those researching and using advanced polymers in such areas as microelectronics and biomedical devices. - Looks at alternative approaches used to develop complex patterns at the nanoscale - Concentrates on state of the art nanolithographic methods - Written by a distinguished international team of contributors
Nanolithography and Patterning Techniques in Microelectronics
Author: D Bucknall
Publisher: Elsevier
ISBN: 1845690907
Category : Science
Languages : en
Pages : 424
Book Description
Techniques such as surface patterning have facilitated the emergence of advanced polymers with applications in areas such as microelectronics. Surface patterning of polymers has conventionally been undertaken by optical lithography. However, a new generation of nanolithographic and patterning techniques has made it possible to develop complex patterns at the nanoscale. Non-conventional lithography and patterning summarises this new range of techniques and their industrial applications.A number of chapters look at ways of forming and modifying surfaces for patterning. These are complemented by chapters on particular patterning techniques such as soft lithography, ion beam patterning, the use of nanostencils, photolithography and inkjet printing. The book also discusses prototyping and the manufacture of particular devices.With its distinguished international team of contributors, Non-conventional lithography and patterning is a standard reference for both those researching and using advanced polymers in such areas as microelectronics and biomedical devices. - Looks at alternative approaches used to develop complex patterns at the nanoscale - Concentrates on state of the art nanolithographic methods - Written by a distinguished international team of contributors
Publisher: Elsevier
ISBN: 1845690907
Category : Science
Languages : en
Pages : 424
Book Description
Techniques such as surface patterning have facilitated the emergence of advanced polymers with applications in areas such as microelectronics. Surface patterning of polymers has conventionally been undertaken by optical lithography. However, a new generation of nanolithographic and patterning techniques has made it possible to develop complex patterns at the nanoscale. Non-conventional lithography and patterning summarises this new range of techniques and their industrial applications.A number of chapters look at ways of forming and modifying surfaces for patterning. These are complemented by chapters on particular patterning techniques such as soft lithography, ion beam patterning, the use of nanostencils, photolithography and inkjet printing. The book also discusses prototyping and the manufacture of particular devices.With its distinguished international team of contributors, Non-conventional lithography and patterning is a standard reference for both those researching and using advanced polymers in such areas as microelectronics and biomedical devices. - Looks at alternative approaches used to develop complex patterns at the nanoscale - Concentrates on state of the art nanolithographic methods - Written by a distinguished international team of contributors
Nanolithography
Author: M Feldman
Publisher: Woodhead Publishing
ISBN: 0857098756
Category : Technology & Engineering
Languages : en
Pages : 599
Book Description
Integrated circuits, and devices fabricated using the techniques developed for integrated circuits, have steadily gotten smaller, more complex, and more powerful. The rate of shrinking is astonishing – some components are now just a few dozen atoms wide. This book attempts to answer the questions, "What comes next? and "How do we get there?Nanolithography outlines the present state of the art in lithographic techniques, including optical projection in both deep and extreme ultraviolet, electron and ion beams, and imprinting. Special attention is paid to related issues, such as the resists used in lithography, the masks (or lack thereof), the metrology needed for nano-features, modeling, and the limitations caused by feature edge roughness. In addition emerging technologies are described, including the directed assembly of wafer features, nanostructures and devices, nano-photonics, and nano-fluidics.This book is intended as a guide to the researcher new to this field, reading related journals or facing the complexities of a technical conference. Its goal is to give enough background information to enable such a researcher to understand, and appreciate, new developments in nanolithography, and to go on to make advances of his/her own. - Outlines the current state of the art in alternative nanolithography technologies in order to cope with the future reduction in size of semiconductor chips to nanoscale dimensions - Covers lithographic techniques, including optical projection, extreme ultraviolet (EUV), nanoimprint, electron beam and ion beam lithography - Describes the emerging applications of nanolithography in nanoelectronics, nanophotonics and microfluidics
Publisher: Woodhead Publishing
ISBN: 0857098756
Category : Technology & Engineering
Languages : en
Pages : 599
Book Description
Integrated circuits, and devices fabricated using the techniques developed for integrated circuits, have steadily gotten smaller, more complex, and more powerful. The rate of shrinking is astonishing – some components are now just a few dozen atoms wide. This book attempts to answer the questions, "What comes next? and "How do we get there?Nanolithography outlines the present state of the art in lithographic techniques, including optical projection in both deep and extreme ultraviolet, electron and ion beams, and imprinting. Special attention is paid to related issues, such as the resists used in lithography, the masks (or lack thereof), the metrology needed for nano-features, modeling, and the limitations caused by feature edge roughness. In addition emerging technologies are described, including the directed assembly of wafer features, nanostructures and devices, nano-photonics, and nano-fluidics.This book is intended as a guide to the researcher new to this field, reading related journals or facing the complexities of a technical conference. Its goal is to give enough background information to enable such a researcher to understand, and appreciate, new developments in nanolithography, and to go on to make advances of his/her own. - Outlines the current state of the art in alternative nanolithography technologies in order to cope with the future reduction in size of semiconductor chips to nanoscale dimensions - Covers lithographic techniques, including optical projection, extreme ultraviolet (EUV), nanoimprint, electron beam and ion beam lithography - Describes the emerging applications of nanolithography in nanoelectronics, nanophotonics and microfluidics
Nanofabrication
Author: José María de Teresa
Publisher:
ISBN: 9780750326087
Category : Nanolithography
Languages : en
Pages : 0
Book Description
A comprehensive edited volume on important and up-to-date nanolithography techniques and applications. The book includes an introduction on the importance of nanolithography in today's research and technology, providing examples of its applications. The remainder of the book is split into two sections. The first section contains the most important and established nanolithography techniques. As well as a detailed description of each technique, the reader can obtain useful information about the main advantages and drawbacks of each technique in terms of resolution, throughput, number of steps needed, cost, etc. At the end of this section, the reader will be able to decide which technique to use for different applications. The second section explores more specific applications of the nanolithography techniques previously described; as well as new techniques and applications. In some cases, the processes described in these chapters involve a combination of several nanolithography techniques. This section is less general but provides the reader with real examples.
Publisher:
ISBN: 9780750326087
Category : Nanolithography
Languages : en
Pages : 0
Book Description
A comprehensive edited volume on important and up-to-date nanolithography techniques and applications. The book includes an introduction on the importance of nanolithography in today's research and technology, providing examples of its applications. The remainder of the book is split into two sections. The first section contains the most important and established nanolithography techniques. As well as a detailed description of each technique, the reader can obtain useful information about the main advantages and drawbacks of each technique in terms of resolution, throughput, number of steps needed, cost, etc. At the end of this section, the reader will be able to decide which technique to use for different applications. The second section explores more specific applications of the nanolithography techniques previously described; as well as new techniques and applications. In some cases, the processes described in these chapters involve a combination of several nanolithography techniques. This section is less general but provides the reader with real examples.
Nanofabrication
Author: Maria Stepanova
Publisher: Springer Science & Business Media
ISBN: 3709104246
Category : Technology & Engineering
Languages : en
Pages : 344
Book Description
Intended to update scientists and engineers on the current state of the art in a variety of key techniques used extensively in the fabrication of structures at the nanoscale. The present work covers the essential technologies for creating sub 25 nm features lithographically, depositing layers with nanometer control, and etching patterns and structures at the nanoscale. A distinguishing feature of this book is a focus not on extension of microelectronics fabrication, but rather on techniques applicable for building NEMS, biosensors, nanomaterials, photonic crystals, and other novel devices and structures that will revolutionize society in the coming years.
Publisher: Springer Science & Business Media
ISBN: 3709104246
Category : Technology & Engineering
Languages : en
Pages : 344
Book Description
Intended to update scientists and engineers on the current state of the art in a variety of key techniques used extensively in the fabrication of structures at the nanoscale. The present work covers the essential technologies for creating sub 25 nm features lithographically, depositing layers with nanometer control, and etching patterns and structures at the nanoscale. A distinguishing feature of this book is a focus not on extension of microelectronics fabrication, but rather on techniques applicable for building NEMS, biosensors, nanomaterials, photonic crystals, and other novel devices and structures that will revolutionize society in the coming years.
Fundamentals and Applications of Nano Silicon in Plasmonics and Fullerines
Author: Munir H. Nayfeh
Publisher: Elsevier
ISBN: 0323480586
Category : Science
Languages : en
Pages : 604
Book Description
Fundamentals and Applications of Nano Silicon in Plasmonics and Fullerines: Current and Future Trends addresses current and future trends in the application and commercialization of nanosilicon. The book presents current, innovative and prospective applications and products based on nanosilicon and their binary system in the fields of energy harvesting and storage, lighting (solar cells and nano-capacitor and fuel cell devices and nanoLEDs), electronics (nanotransistors and nanomemory, quantum computing, photodetectors for space applications; biomedicine (substance detection, plasmonic treatment of disease, skin and hair care, implantable glucose sensor, capsules for drug delivery and underground water and oil exploration), and art (glass and pottery). Moreover, the book includes material on the use of advanced laser and proximal probes for imaging and manipulation of nanoparticles and atoms. In addition, coverage is given to carbon and how it contrasts and integrates with silicon with additional related applications. This is a valuable resource to all those seeking to learn more about the commercialization of nanosilicon, and to researchers wanting to learn more about emerging nanosilicon applications. - Features a variety of designs and operation of nano-devices, helping engineers to make the best use of nanosilicon - Contains underlying principles of how nanomaterials work and the variety of applications they provide, giving those new to nanosilicon a fundamental understanding - Assesses the viability of various nanoslicon devices for mass production and commercialization, thereby providing an important source of information for engineers
Publisher: Elsevier
ISBN: 0323480586
Category : Science
Languages : en
Pages : 604
Book Description
Fundamentals and Applications of Nano Silicon in Plasmonics and Fullerines: Current and Future Trends addresses current and future trends in the application and commercialization of nanosilicon. The book presents current, innovative and prospective applications and products based on nanosilicon and their binary system in the fields of energy harvesting and storage, lighting (solar cells and nano-capacitor and fuel cell devices and nanoLEDs), electronics (nanotransistors and nanomemory, quantum computing, photodetectors for space applications; biomedicine (substance detection, plasmonic treatment of disease, skin and hair care, implantable glucose sensor, capsules for drug delivery and underground water and oil exploration), and art (glass and pottery). Moreover, the book includes material on the use of advanced laser and proximal probes for imaging and manipulation of nanoparticles and atoms. In addition, coverage is given to carbon and how it contrasts and integrates with silicon with additional related applications. This is a valuable resource to all those seeking to learn more about the commercialization of nanosilicon, and to researchers wanting to learn more about emerging nanosilicon applications. - Features a variety of designs and operation of nano-devices, helping engineers to make the best use of nanosilicon - Contains underlying principles of how nanomaterials work and the variety of applications they provide, giving those new to nanosilicon a fundamental understanding - Assesses the viability of various nanoslicon devices for mass production and commercialization, thereby providing an important source of information for engineers
Microlithography
Author: Bruce W. Smith
Publisher: CRC Press
ISBN: 1420051539
Category : Technology & Engineering
Languages : en
Pages : 866
Book Description
This new edition of the bestselling Microlithography: Science and Technology provides a balanced treatment of theoretical and operational considerations, from elementary concepts to advanced aspects of modern submicron microlithography. Each chapter reflects the current research and practices from the world's leading academic and industrial laboratories detailed by a stellar panel of international experts. New in the Second Edition In addition to updated information on existing material, this new edition features coverage of technologies developed over the last decade since the first edition appeared, including: Immersion Lithography 157nm Lithography Electron Projection Lithography (EPL) Extreme Ultraviolet (EUV) Lithography Imprint Lithography Photoresists for 193nm and Immersion Lithography Scatterometry Microlithography: Science and Technology, Second Edition authoritatively covers the physics, chemistry, optics, metrology tools and techniques, resist processing and materials, and fabrication methods involved in the latest generations of microlithography such as immersion lithography and extreme ultraviolet (EUV) lithography. It also looks ahead to the possible future systems and technologies that will bring the next generations to fruition. Loaded with illustrations, equations, tables, and time-saving references to the most current literature, this book is the most comprehensive and reliable source for anyone, from student to seasoned professional, looking to achieve robust, accurate, and cost-effective microlithography processes and systems.
Publisher: CRC Press
ISBN: 1420051539
Category : Technology & Engineering
Languages : en
Pages : 866
Book Description
This new edition of the bestselling Microlithography: Science and Technology provides a balanced treatment of theoretical and operational considerations, from elementary concepts to advanced aspects of modern submicron microlithography. Each chapter reflects the current research and practices from the world's leading academic and industrial laboratories detailed by a stellar panel of international experts. New in the Second Edition In addition to updated information on existing material, this new edition features coverage of technologies developed over the last decade since the first edition appeared, including: Immersion Lithography 157nm Lithography Electron Projection Lithography (EPL) Extreme Ultraviolet (EUV) Lithography Imprint Lithography Photoresists for 193nm and Immersion Lithography Scatterometry Microlithography: Science and Technology, Second Edition authoritatively covers the physics, chemistry, optics, metrology tools and techniques, resist processing and materials, and fabrication methods involved in the latest generations of microlithography such as immersion lithography and extreme ultraviolet (EUV) lithography. It also looks ahead to the possible future systems and technologies that will bring the next generations to fruition. Loaded with illustrations, equations, tables, and time-saving references to the most current literature, this book is the most comprehensive and reliable source for anyone, from student to seasoned professional, looking to achieve robust, accurate, and cost-effective microlithography processes and systems.
Nanotechnology and Tissue Engineering
Author: Cato T. Laurencin
Publisher: CRC Press
ISBN: 1420051830
Category : Medical
Languages : en
Pages : 388
Book Description
Nanofabrication gives us the ability to mimic biological structures with molecular level precision. Offering a natural progression of topics, Nanotechnology and Tissue Engineering: The Scaffold provides a state-of-the-art account of groundbreaking research in this rapidly emerging area of biomedical engineering. Emphasizing the importance of scaffo
Publisher: CRC Press
ISBN: 1420051830
Category : Medical
Languages : en
Pages : 388
Book Description
Nanofabrication gives us the ability to mimic biological structures with molecular level precision. Offering a natural progression of topics, Nanotechnology and Tissue Engineering: The Scaffold provides a state-of-the-art account of groundbreaking research in this rapidly emerging area of biomedical engineering. Emphasizing the importance of scaffo
Nanotechnology and Regenerative Engineering
Author: Cato T. Laurencin
Publisher: CRC Press
ISBN: 1466585382
Category : Medical
Languages : en
Pages : 468
Book Description
Nanotechnology and regenerative engineering have emerged to the forefront as the most versatile and innovative technologies to foster novel therapeutic techniques and strategies of the twenty-first century. The first edition of Nanotechnology and Tissue Engineering: The Scaffold was the first comprehensive source to explain the developments in nano
Publisher: CRC Press
ISBN: 1466585382
Category : Medical
Languages : en
Pages : 468
Book Description
Nanotechnology and regenerative engineering have emerged to the forefront as the most versatile and innovative technologies to foster novel therapeutic techniques and strategies of the twenty-first century. The first edition of Nanotechnology and Tissue Engineering: The Scaffold was the first comprehensive source to explain the developments in nano
Polymer Optical Fibres
Author: Christian-Alexander Bunge
Publisher: Woodhead Publishing
ISBN: 0081000561
Category : Technology & Engineering
Languages : en
Pages : 438
Book Description
Polymer Optical Fibres: Fibre Types, Materials, Fabrication, Characterization, and Applications explores polymer optical fibers, specifically their materials, fabrication, characterization, measurement techniques, and applications. Optical effects, including light propagation, degrading effects of attenuation, scattering, and dispersion, are explained. Other important parameters like mechanical strength, operating temperatures, and processability are also described. Polymer optical fibers (POF) have a number of advantages over glass fibers, such as low cost, flexibility, low weight, electromagnetic immunity, good bandwidth, simple installation, and mechanical stability. - Provides systematic and comprehensive coverage of materials, fabrication, properties, measurement techniques, and applications of POF - Focuses on industry needs in communication, illumination and sensors, the automotive industry, and medical and biotechnology - Features input from leading experts in POF technology, with experience spanning optoelectronics, polymer, and textiles - Explains optical effects, including light propagation, degrading effects of attenuation, scattering, and dispersion
Publisher: Woodhead Publishing
ISBN: 0081000561
Category : Technology & Engineering
Languages : en
Pages : 438
Book Description
Polymer Optical Fibres: Fibre Types, Materials, Fabrication, Characterization, and Applications explores polymer optical fibers, specifically their materials, fabrication, characterization, measurement techniques, and applications. Optical effects, including light propagation, degrading effects of attenuation, scattering, and dispersion, are explained. Other important parameters like mechanical strength, operating temperatures, and processability are also described. Polymer optical fibers (POF) have a number of advantages over glass fibers, such as low cost, flexibility, low weight, electromagnetic immunity, good bandwidth, simple installation, and mechanical stability. - Provides systematic and comprehensive coverage of materials, fabrication, properties, measurement techniques, and applications of POF - Focuses on industry needs in communication, illumination and sensors, the automotive industry, and medical and biotechnology - Features input from leading experts in POF technology, with experience spanning optoelectronics, polymer, and textiles - Explains optical effects, including light propagation, degrading effects of attenuation, scattering, and dispersion
Nanosensors for Chemical and Biological Applications
Author: Kevin C. Honeychurch
Publisher: Elsevier
ISBN: 0857096729
Category : Science
Languages : en
Pages : 373
Book Description
Nano-scale materials are proving attractive for a new generation of devices, due to their unique properties. They are used to create fast-responding sensors with good sensitivity and selectivity for the detection of chemical species and biological agents. Nanosensors for Chemical and Biological Applications provides an overview of developments brought about by the application of nanotechnology for both chemical and biological sensor development. Part one addresses electrochemical nanosensors and their applications for enhanced biomedical sensing, including blood glucose and trace metal ion analysis. Part two goes on to discuss spectrographic nanosensors, with chapters on the use of nanoparticle sensors for biochemical and environmental sensing and other techniques for detecting nanoparticles in the environment. Nanosensors for Chemical and Biological Applications serves as a standard reference for R&D managers in a range of industrial sectors, including nanotechnology, electronics, biotechnology, magnetic and optical materials, and sensors technology, as well as researchers and academics with an interest in these fields. - Reviews the range electrochemical nanosensors, including the use of carbon nanotubes, glucose nanosensors, chemiresistor sensors using metal oxides, and nanoparticles - Discusses spectrographic nanosensors, such as surface-enhanced Raman scattering (SERS) nanoparticle sensors, the use of coated gold nanoparticles, and semiconductor quantum dots
Publisher: Elsevier
ISBN: 0857096729
Category : Science
Languages : en
Pages : 373
Book Description
Nano-scale materials are proving attractive for a new generation of devices, due to their unique properties. They are used to create fast-responding sensors with good sensitivity and selectivity for the detection of chemical species and biological agents. Nanosensors for Chemical and Biological Applications provides an overview of developments brought about by the application of nanotechnology for both chemical and biological sensor development. Part one addresses electrochemical nanosensors and their applications for enhanced biomedical sensing, including blood glucose and trace metal ion analysis. Part two goes on to discuss spectrographic nanosensors, with chapters on the use of nanoparticle sensors for biochemical and environmental sensing and other techniques for detecting nanoparticles in the environment. Nanosensors for Chemical and Biological Applications serves as a standard reference for R&D managers in a range of industrial sectors, including nanotechnology, electronics, biotechnology, magnetic and optical materials, and sensors technology, as well as researchers and academics with an interest in these fields. - Reviews the range electrochemical nanosensors, including the use of carbon nanotubes, glucose nanosensors, chemiresistor sensors using metal oxides, and nanoparticles - Discusses spectrographic nanosensors, such as surface-enhanced Raman scattering (SERS) nanoparticle sensors, the use of coated gold nanoparticles, and semiconductor quantum dots