Nanoelectronic Circuit Design

Nanoelectronic Circuit Design PDF Author: Niraj K. Jha
Publisher: Springer Science & Business Media
ISBN: 1441976094
Category : Technology & Engineering
Languages : en
Pages : 489

Get Book

Book Description
This book is about large-scale electronic circuits design driven by nanotechnology, where nanotechnology is broadly defined as building circuits using nanoscale devices that are either implemented with nanomaterials (e.g., nanotubes or nanowires) or following an unconventional method (e.g., FinFET or III/V compound-based devices). These nanoscale devices have significant potential to revolutionize the fabrication and integration of electronic systems and scale beyond the perceived scaling limitations of traditional CMOS. While innovations in nanotechnology originate at the individual device level, realizing the true impact of electronic systems demands that these device-level capabilities be translated into system-level benefits. This is the first book to focus on nanoscale circuits and their design issues, bridging the existing gap between nanodevice research and nanosystem design.

Nanoelectronic Circuit Design

Nanoelectronic Circuit Design PDF Author: Niraj K. Jha
Publisher: Springer Science & Business Media
ISBN: 1441976094
Category : Technology & Engineering
Languages : en
Pages : 489

Get Book

Book Description
This book is about large-scale electronic circuits design driven by nanotechnology, where nanotechnology is broadly defined as building circuits using nanoscale devices that are either implemented with nanomaterials (e.g., nanotubes or nanowires) or following an unconventional method (e.g., FinFET or III/V compound-based devices). These nanoscale devices have significant potential to revolutionize the fabrication and integration of electronic systems and scale beyond the perceived scaling limitations of traditional CMOS. While innovations in nanotechnology originate at the individual device level, realizing the true impact of electronic systems demands that these device-level capabilities be translated into system-level benefits. This is the first book to focus on nanoscale circuits and their design issues, bridging the existing gap between nanodevice research and nanosystem design.

Nanoelectronic Circuit Design

Nanoelectronic Circuit Design PDF Author: Niraj K Jha
Publisher: Springer
ISBN: 9781441976109
Category :
Languages : en
Pages : 500

Get Book

Book Description


Introduction to Nanoelectronic Single-electron Circuit Design

Introduction to Nanoelectronic Single-electron Circuit Design PDF Author: Jaap Hoekstra
Publisher:
ISBN: 9781315321844
Category : Electronic books
Languages : en
Pages :

Get Book

Book Description
Today, the concepts of single-electron tunneling (SET) are used to understand and model single-atom and single-molecule nanoelectronics. The characteristics of nanoelectronic devices, especially SET transistors, can be understood on the basis of the physics of nanoelectronic devices and circuit models. A circuit theory approach is necessary for considering possible integration with current microelectronic circuitry. To explain the properties and possibilities of SET devices, this book follows an approach to modeling these devices using electronic circuit theory. All models and equivalent circuits are derived from the first principles of circuit theory. Based on energy conservation, the circuit model of SET is an impulsive current source, and modeling distinguishes between bounded and unbounded currents. The Coulomb blockade is explained as a property of a single junction. In addition, this edition differs from the previous one by elaborating on the section on spice simulations and providing a spice simulation on the SET electron box circuit, including the spice netlist. Also, a complete, new proof of the two-capacitor problem in circuit theory is presented; the importance of this proof in understanding energy conservation in SET circuits cannot be underestimated. This book will be very useful for advanced undergraduate- and graduate-level students of electrical engineering and nanoelectronics and researchers in nanotechnology, nanoelectronic device physics, and computer science. Only book modeling both single-electron tunneling and many electron tunneling from the points of view of electronics; starting from experiments, via a physics description, working towards a circuit description; and based on energy conservation, in electrical circuits, developing the impulse circuit model for single-electron tunneling.

Innovative Applications of Nanowires for Circuit Design

Innovative Applications of Nanowires for Circuit Design PDF Author: Raj, Balwinder
Publisher: IGI Global
ISBN: 1799864693
Category : Technology & Engineering
Languages : en
Pages : 263

Get Book

Book Description
Nanowires are an important sector of circuit design whose applications in very-large-scale integration design (VLSI) have huge impacts for bringing revolutionary advancements in nanoscale devices, circuits, and systems due to improved electronic properties of the nanowires. Nanowires are potential devices for VLSI circuits and system applications and are highly preferred in novel nanoscale devices due to their high mobility and high-driving capacity. Although the knowledge and resources for the fabrication of nanowires is currently limited, it is predicted that, with the advancement of technology, conventional fabrication flow can be used for nanoscale devices, specifically nanowires. Innovative Applications of Nanowires for Circuit Design provides relevant theoretical frameworks that include device physics, modeling, circuit design, and the latest developments in experimental fabrication in the field of nanotechnology. The book covers advanced modeling concepts of nanowires along with their role as a key enabler for innovation in GLSI devices, circuits, and systems. While highlighting topics such as design, simulation, types and applications, and performance analysis of nanowires, this book is ideally intended for engineers, practitioners, stakeholders, academicians, researchers, and students interested in electronics engineering, nanoscience, and nanotechnology.

Nanoelectronics

Nanoelectronics PDF Author:
Publisher: Elsevier
ISBN: 0128133546
Category : Science
Languages : en
Pages : 476

Get Book

Book Description
Nanoelectronics: Devices, Circuits and Systems explores current and emerging trends in the field of nanoelectronics, from both a devices-to-circuits and circuits-to-systems perspective. It covers a wide spectrum and detailed discussion on the field of nanoelectronic devices, circuits and systems. This book presents an in-depth analysis and description of electron transport phenomenon at nanoscale dimensions. Both qualitative and analytical approaches are taken to explore the devices, circuit functionalities and their system applications at deep submicron and nanoscale levels. Recent devices, including FinFET, Tunnel FET, and emerging materials, including graphene, and its applications are discussed. In addition, a chapter on advanced VLSI interconnects gives clear insight to the importance of these nano-transmission lines in determining the overall IC performance. The importance of integration of optics with electronics is elucidated in the optoelectronics and photonic integrated circuit sections of this book. This book provides valuable resource materials for scientists and electrical engineers who want to learn more about nanoscale electronic materials and how they are used. Shows how electronic transport works at the nanoscale level Demonstrates how nanotechnology can help engineers create more effective circuits and systems Assesses the most commonly used nanoelectronic devices, explaining which is best for different situations

Introduction to Nanoelectronic Single-Electron Circuit Design

Introduction to Nanoelectronic Single-Electron Circuit Design PDF Author: Jaap Hoekstra
Publisher: CRC Press
ISBN: 131534081X
Category : Science
Languages : en
Pages : 348

Get Book

Book Description
Today, the concepts of single-electron tunneling (SET) are used to understand and model single-atom and single-molecule nanoelectronics. The characteristics of nanoelectronic devices, especially SET transistors, can be understood on the basis of the physics of nanoelectronic devices and circuit models. A circuit theory approach is necessary for considering possible integration with current microelectronic circuitry. To explain the properties and possibilities of SET devices, this book follows an approach to modeling these devices using electronic circuit theory. All models and equivalent circuits are derived from the first principles of circuit theory. Based on energy conservation, the circuit model of SET is an impulsive current source, and modeling distinguishes between bounded and unbounded currents. The Coulomb blockade is explained as a property of a single junction. In addition, this edition differs from the previous one by elaborating on the section on spice simulations and providing a spice simulation on the SET electron box circuit, including the spice netlist. Also, a complete, new proof of the two-capacitor problem in circuit theory is presented; the importance of this proof in understanding energy conservation in SET circuits cannot be underestimated. This book will be very useful for advanced undergraduate- and graduate-level students of electrical engineering and nanoelectronics and researchers in nanotechnology, nanoelectronic device physics, and computer science. Only book modeling both single-electron tunneling and many electron tunneling from the points of view of electronics; starting from experiments, via a physics description, working towards a circuit description; and based on energy conservation, in electrical circuits, developing the impulse circuit model for single-electron tunneling.

Memristor-Based Nanoelectronic Computing Circuits and Architectures

Memristor-Based Nanoelectronic Computing Circuits and Architectures PDF Author: Ioannis Vourkas
Publisher: Springer
ISBN: 3319226479
Category : Technology & Engineering
Languages : en
Pages : 241

Get Book

Book Description
This book considers the design and development of nanoelectronic computing circuits, systems and architectures focusing particularly on memristors, which represent one of today’s latest technology breakthroughs in nanoelectronics. The book studies, explores, and addresses the related challenges and proposes solutions for the smooth transition from conventional circuit technologies to emerging computing memristive nanotechnologies. Its content spans from fundamental device modeling to emerging storage system architectures and novel circuit design methodologies, targeting advanced non-conventional analog/digital massively parallel computational structures. Several new results on memristor modeling, memristive interconnections, logic circuit design, memory circuit architectures, computer arithmetic systems, simulation software tools, and applications of memristors in computing are presented. High-density memristive data storage combined with memristive circuit-design paradigms and computational tools applied to solve NP-hard artificial intelligence problems, as well as memristive arithmetic-logic units, certainly pave the way for a very promising memristive era in future electronic systems. Furthermore, these graph-based NP-hard problems are solved on memristive networks, and coupled with Cellular Automata (CA)-inspired computational schemes that enable computation within memory. All chapters are written in an accessible manner and are lavishly illustrated. The book constitutes an informative cornerstone for young scientists and a comprehensive reference to the experienced reader, hoping to stimulate further research on memristive devices, circuits, and systems.

Nanoelectronic Mixed-Signal System Design

Nanoelectronic Mixed-Signal System Design PDF Author: Saraju Mohanty
Publisher: McGraw Hill Professional
ISBN: 0071823034
Category : Technology & Engineering
Languages : en
Pages : 829

Get Book

Book Description
Covering both the classical and emerging nanoelectronic technologies being used in mixed-signal design, this book addresses digital, analog, and memory components. Winner of the Association of American Publishers' 2016 PROSE Award in the Textbook/Physical Sciences & Mathematics category. Nanoelectronic Mixed-Signal System Design offers professionals and students a unified perspective on the science, engineering, and technology behind nanoelectronics system design. Written by the director of the NanoSystem Design Laboratory at the University of North Texas, this comprehensive guide provides a large-scale picture of the design and manufacturing aspects of nanoelectronic-based systems. It features dual coverage of mixed-signal circuit and system design, rather than just digital or analog-only. Key topics such as process variations, power dissipation, and security aspects of electronic system design are discussed. Top-down analysis of all stages--from design to manufacturing Coverage of current and developing nanoelectronic technologies--not just nano-CMOS Describes the basics of nanoelectronic technology and the structure of popular electronic systems Reveals the techniques required for design excellence and manufacturability

Nano-CMOS Circuit and Physical Design

Nano-CMOS Circuit and Physical Design PDF Author: Ban Wong
Publisher: John Wiley & Sons
ISBN: 0471678864
Category : Technology & Engineering
Languages : en
Pages : 413

Get Book

Book Description
Based on the authors' expansive collection of notes taken over the years, Nano-CMOS Circuit and Physical Design bridges the gap between physical and circuit design and fabrication processing, manufacturability, and yield. This innovative book covers: process technology, including sub-wavelength optical lithography; impact of process scaling on circuit and physical implementation and low power with leaky transistors; and DFM, yield, and the impact of physical implementation.

Nanoelectronics Fundamentals

Nanoelectronics Fundamentals PDF Author: Hassan Raza
Publisher: Springer Nature
ISBN: 3030325733
Category : Science
Languages : en
Pages : 279

Get Book

Book Description
This book covers the state of the art in the theoretical framework, computational modeling, and the fabrication and characterization of nanoelectronics devices. It addresses material properties, device physics, circuit analysis, system design, and a range of applications. A discussion on the nanoscale fabrication, characterization and metrology is also included. The book offers a valuable resource for researchers, graduate students, and senior undergraduate students in engineering and natural sciences, who are interested in exploring nanoelectronics from materials, devices, systems, and applications perspectives.