MYSQL FOR JAVA GUI: Database, Cryptography, and Image Processing

MYSQL FOR JAVA GUI: Database, Cryptography, and Image Processing PDF Author: Vivian Siahaan
Publisher: SPARTA PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 475

Get Book Here

Book Description
In this book, you will learn how to build from scratch a criminal records management database system using Java / MySQL. All Java code for digital image processing in this book is Native Java. Intentionally not to rely on external libraries, so that readers know in detail the process of extracting digital images from scratch in Java. There are only three external libraries used in this book: Connector / J to facilitate Java to MySQL connections, JCalendar to display calendar controls, and JFreeChart to display graphics. Digital image techniques to extract image features used in this book are grascaling, sharpening, invertering, blurring, dilation, erosion, closing, opening, vertical prewitt, horizontal prewitt, Laplacian, horizontal sobel, and vertical sobel. For readers, you can develop it to store other advanced image features based on descriptors such as SIFT and others for developing descriptor based matching. In the first chapter, you will be shown the number of devices needed to be downloaded and installed. You need to know how to add external libraries to the NetBeans environment. These tools are needed so that you can run the Java scripts. In the second chapter, you will learn the basics of cryptography using Java. Here, you will learn how to write a Java program to count Hash, MAC (Message Authentication Code), store keys in a KeyStore, generate PrivateKey and PublicKey, encrypt / decrypt data, and generate and verify digital prints. In the third chapter, you will learn how to create and store salt passwords and verify them. You will create a Login table. In this case, you will see how to create a Java GUI using NetBeans to implement it. In addition to the Login table, in this chapter you will also create a Client table. In the case of the Client table, you will learn how to generate and save public and private keys into a database. You will also learn how to encrypt / decrypt data and save the results into a database. In the fourth chapter, you will create an Account table. This account table has the following ten fields: account_id (primary key), client_id (primarykey), account_number, account_date, account_type, plain_balance, cipher_balance, decipher_balance, digital_signature, and signature_verification. In this case, you will learn how to implement generating and verifying digital prints and storing the results into a database. In the fifth chapter, You create a table with the name of the Account, which has ten columns: account_id (primary key), client_id (primarykey), account_number, account_date, account_type, plain_balance, cipher_balance, decipher_balance, digital_signature, and signature_verification. In the sixth chapter, you will create a Client_Data table, which has the following seven fields: client_data_id (primary key), account_id (primary_key), birth_date, address, mother_name, telephone, and photo_path. In the seventh chapter, you will be taught to create Java GUI to view, edit, insert, and delete Suspect table data. This table has eleven columns: suspect_id (primary key), suspect_name, birth_date, case_date, report_date, suspect_ status, arrest_date, mother_name, address, telephone, and photo. In the eighth chapter, you will be taught how to create Crime database and its tables. In nineth chapter, you will be taught how to extract image features, utilizing BufferedImage class, in Java GUI. In the tenth chapter, you will be taught to create Java GUI to view, edit, insert, and delete Feature_Extraction table data. This table has eight columns: feature_id (primary key), suspect_id (foreign key), feature1, feature2, feature3, feature4, feature5, and feature6. All six fields (except keys) will have a BLOB data type, so that the image of the feature will be directly saved into this table. In the eleventh chapter, you will add two tables: Police_Station and Investigator. These two tables will later be joined to Suspect table through another table, File_Case, which will be built in the seventh chapter. The Police_Station has six columns: police_station_id (primary key), location, city, province, telephone, and photo. The Investigator has eight columns: investigator_id (primary key), investigator_name, rank, birth_date, gender, address, telephone, and photo. Here, you will design a Java GUI to display, edit, fill, and delete data in both tables. In the twelfth chapter, you will add two tables: Victim and File_Case. The File_Case table will connect four other tables: Suspect, Police_Station, Investigator and Victim. The Victim table has nine columns: victim_id (primary key), victim_name, crime_type, birth_date, crime_date, gender, address, telephone, and photo. The File_Case has seven columns: file_case_id (primary key), suspect_id (foreign key), police_station_id (foreign key), investigator_id (foreign key), victim_id (foreign key), status, and description. Here, you will also design a Java GUI to display, edit, fill, and delete data in both tables.

MYSQL FOR JAVA GUI: Database, Cryptography, and Image Processing

MYSQL FOR JAVA GUI: Database, Cryptography, and Image Processing PDF Author: Vivian Siahaan
Publisher: SPARTA PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 475

Get Book Here

Book Description
In this book, you will learn how to build from scratch a criminal records management database system using Java / MySQL. All Java code for digital image processing in this book is Native Java. Intentionally not to rely on external libraries, so that readers know in detail the process of extracting digital images from scratch in Java. There are only three external libraries used in this book: Connector / J to facilitate Java to MySQL connections, JCalendar to display calendar controls, and JFreeChart to display graphics. Digital image techniques to extract image features used in this book are grascaling, sharpening, invertering, blurring, dilation, erosion, closing, opening, vertical prewitt, horizontal prewitt, Laplacian, horizontal sobel, and vertical sobel. For readers, you can develop it to store other advanced image features based on descriptors such as SIFT and others for developing descriptor based matching. In the first chapter, you will be shown the number of devices needed to be downloaded and installed. You need to know how to add external libraries to the NetBeans environment. These tools are needed so that you can run the Java scripts. In the second chapter, you will learn the basics of cryptography using Java. Here, you will learn how to write a Java program to count Hash, MAC (Message Authentication Code), store keys in a KeyStore, generate PrivateKey and PublicKey, encrypt / decrypt data, and generate and verify digital prints. In the third chapter, you will learn how to create and store salt passwords and verify them. You will create a Login table. In this case, you will see how to create a Java GUI using NetBeans to implement it. In addition to the Login table, in this chapter you will also create a Client table. In the case of the Client table, you will learn how to generate and save public and private keys into a database. You will also learn how to encrypt / decrypt data and save the results into a database. In the fourth chapter, you will create an Account table. This account table has the following ten fields: account_id (primary key), client_id (primarykey), account_number, account_date, account_type, plain_balance, cipher_balance, decipher_balance, digital_signature, and signature_verification. In this case, you will learn how to implement generating and verifying digital prints and storing the results into a database. In the fifth chapter, You create a table with the name of the Account, which has ten columns: account_id (primary key), client_id (primarykey), account_number, account_date, account_type, plain_balance, cipher_balance, decipher_balance, digital_signature, and signature_verification. In the sixth chapter, you will create a Client_Data table, which has the following seven fields: client_data_id (primary key), account_id (primary_key), birth_date, address, mother_name, telephone, and photo_path. In the seventh chapter, you will be taught to create Java GUI to view, edit, insert, and delete Suspect table data. This table has eleven columns: suspect_id (primary key), suspect_name, birth_date, case_date, report_date, suspect_ status, arrest_date, mother_name, address, telephone, and photo. In the eighth chapter, you will be taught how to create Crime database and its tables. In nineth chapter, you will be taught how to extract image features, utilizing BufferedImage class, in Java GUI. In the tenth chapter, you will be taught to create Java GUI to view, edit, insert, and delete Feature_Extraction table data. This table has eight columns: feature_id (primary key), suspect_id (foreign key), feature1, feature2, feature3, feature4, feature5, and feature6. All six fields (except keys) will have a BLOB data type, so that the image of the feature will be directly saved into this table. In the eleventh chapter, you will add two tables: Police_Station and Investigator. These two tables will later be joined to Suspect table through another table, File_Case, which will be built in the seventh chapter. The Police_Station has six columns: police_station_id (primary key), location, city, province, telephone, and photo. The Investigator has eight columns: investigator_id (primary key), investigator_name, rank, birth_date, gender, address, telephone, and photo. Here, you will design a Java GUI to display, edit, fill, and delete data in both tables. In the twelfth chapter, you will add two tables: Victim and File_Case. The File_Case table will connect four other tables: Suspect, Police_Station, Investigator and Victim. The Victim table has nine columns: victim_id (primary key), victim_name, crime_type, birth_date, crime_date, gender, address, telephone, and photo. The File_Case has seven columns: file_case_id (primary key), suspect_id (foreign key), police_station_id (foreign key), investigator_id (foreign key), victim_id (foreign key), status, and description. Here, you will also design a Java GUI to display, edit, fill, and delete data in both tables.

POSTGRESQL FOR JAVA GUI: Database and Image Processing

POSTGRESQL FOR JAVA GUI: Database and Image Processing PDF Author: Vivian Siahaan
Publisher: SPARTA PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 340

Get Book Here

Book Description
In this book, you will learn how to build from scratch a criminal records management database system using Java/PostgreSQL. All Java code for digital image processing in this book is Native Java. Intentionally not to rely on external libraries, so that readers know in detail the process of extracting digital images from scratch in Java. There are only three external libraries used in this book: Connector / J to facilitate Java to MySQL connections, JCalendar to display calendar controls, and JFreeChart to display graphics. Digital image techniques to extract image features used in this book are grascaling, sharpening, invertering, blurring, dilation, erosion, closing, opening, vertical prewitt, horizontal prewitt, Laplacian, horizontal sobel, and vertical sobel. For readers, you can develop it to store other advanced image features based on descriptors such as SIFT and others for developing descriptor based matching. In the first chapter, you will learn: How to install NetBeans, JDK 11, and the PostgreSQL connector; How to integrate external libraries into projects; How the basic PostgreSQL commands are used; How to query statements to create databases, create tables, fill tables, and manipulate table contents is done.In the first chapter, you will learn: How to install NetBeans, JDK 11, and the PostgreSQL connector; How to integrate external libraries into projects; How the basic PostgreSQL commands are used; How to query statements to create databases, create tables, fill tables, and manipulate table contents is done. In the second chapter, you will learn querying data from the postgresql using jdbc including establishing a database connection, creating a statement object, executing the query, processing the resultset object, querying data using a statement that returns multiple rows, querying data using a statement that has parameters, inserting data into a table using jdbc, updating data in postgresql database using jdbc, calling postgresql stored function using jdbc, deleting data from a postgresql table using jdbc, and postgresql jdbc transaction. In third chapter, you will be taught how to extract image features, utilizing BufferedImage class, in Java GUI. In the fourth chapter, you will be taught how to create Crime database and its tables. In the fifth chapter, you will be taught to create Java GUI to view, edit, insert, and delete Suspect table data. This table has eleven columns: suspect_id (primary key), suspect_name, birth_date, case_date, report_date, suspect_ status, arrest_date, mother_name, address, telephone, and photo. In the sixth chapter, you will be taught to create Java GUI to view, edit, insert, and delete Feature_Extraction table data. This table has eight columns: feature_id (primary key), suspect_id (foreign key), feature1, feature2, feature3, feature4, feature5, and feature6. All six fields (except keys) will have a BLOB data type, so that the image of the feature will be directly saved into this table. In the seventh chapter, you will add two tables: Police_Station and Investigator. These two tables will later be joined to Suspect table through another table, File_Case, which will be built in the seventh chapter. The Police_Station has six columns: police_station_id (primary key), location, city, province, telephone, and photo. The Investigator has eight columns: investigator_id (primary key), investigator_name, rank, birth_date, gender, address, telephone, and photo. Here, you will design a Java GUI to display, edit, fill, and delete data in both tables. In the eigthth chapter, you will add two tables: Victim and File_Case. The File_Case table will connect four other tables: Suspect, Police_Station, Investigator and Victim. The Victim table has nine columns: victim_id (primary key), victim_name, crime_type, birth_date, crime_date, gender, address, telephone, and photo. The File_Case has seven columns: file_case_id (primary key), suspect_id (foreign key), police_station_id (foreign key), investigator_id (foreign key), victim_id (foreign key), status, and description. Here, you will also design a Java GUI to display, edit, fill, and delete data in both tables. Finally, this book is hopefully useful for you.

MariaDB with Java GUI for Cryptography and Image Processing

MariaDB with Java GUI for Cryptography and Image Processing PDF Author: Vivian Siahaan
Publisher: SPARTA PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 465

Get Book Here

Book Description
This book is Java/MariaDB version of our previous books which used Java/MySQL and Java/PostgreSQL. In this book, you will learn how to build from scratch a criminal records management database system and simple bank database system using Java/MariaDB. All Java code for digital image processing in this book is Native Java. Intentionally not to rely on external libraries, so that readers know in detail the process of extracting digital images from scratch in Java. There are only three external libraries used in this book: Connector/J to facilitate Java to MariaDB connections, JCalendar to display calendar controls, and JFreeChart to display graphics. Digital image techniques to extract image features used in this book are grascaling, sharpening, invertering, blurring, dilation, erosion, closing, opening, vertical prewitt, horizontal prewitt, Laplacian, horizontal sobel, and vertical sobel. For readers, you can develop it to store other advanced image features based on descriptors such as SIFT and others for developing descriptor based matching. In the first chapter, you will learn the basics of cryptography using Java. Here, you will learn how to write a Java program to count Hash, MAC (Message Authentication Code), store keys in a KeyStore, generate PrivateKey and PublicKey, encrypt / decrypt data, and generate and verify digital prints. In the second chapter, you will learn how to create and store salt passwords and verify them. You will create a Login table. In this case, you will see how to create a Java GUI using NetBeans to implement it. In addition to the Login table, in this chapter you will also create a Client table. In the case of the Client table, you will learn how to generate and save public and private keys into a database. You will also learn how to encrypt / decrypt data and save the results into a database. In the third chapter, you will create an Account table. This account table has the following ten fields: account_id (primary key), client_id (primarykey), account_number, account_date, account_type, plain_balance, cipher_balance, decipher_balance, digital_signature, and signature_verification. In this case, you will learn how to implement generating and verifying digital prints and storing the results into a database. In the fourth chapter, You create a table with the name of the Account, which has ten columns: account_id (primary key), client_id (primarykey), account_number, account_date, account_type, plain_balance, cipher_balance, decipher_balance, digital_signature, and signature_verification. In the fifth chapter, you will create a Client_Data table, which has the following seven fields: client_data_id (primary key), account_id (primary_key), birth_date, address, mother_name, telephone, and photo_path. In the sixth chapter, you will be taught to create Java GUI to view, edit, insert, and delete Suspect table data. This table has eleven columns: suspect_id (primary key), suspect_name, birth_date, case_date, report_date, suspect_ status, arrest_date, mother_name, address, telephone, and photo. In the seventh chapter, you will be taught how to create Crime database and its tables. In nineth chapter, you will be taught how to extract image features, utilizing BufferedImage class, in Java GUI. In the eighth chapter, you will be taught to create Java GUI to view, edit, insert, and delete Feature_Extraction table data. This table has eight columns: feature_id (primary key), suspect_id (foreign key), feature1, feature2, feature3, feature4, feature5, and feature6. All six fields (except keys) will have a BLOB data type, so that the image of the feature will be directly saved into this table. In the nineth chapter, you will add two tables: Police_Station and Investigator. These two tables will later be joined to Suspect table through another table, File_Case, which will be built in the seventh chapter. The Police_Station has six columns: police_station_id (primary key), location, city, province, telephone, and photo. The Investigator has eight columns: investigator_id (primary key), investigator_name, rank, birth_date, gender, address, telephone, and photo. Here, you will design a Java GUI to display, edit, fill, and delete data in both tables. In the eleventh chapter, you will add two tables: Victim and File_Case. The File_Case table will connect four other tables: Suspect, Police_Station, Investigator and Victim. The Victim table has nine columns: victim_id (primary key), victim_name, crime_type, birth_date, crime_date, gender, address, telephone, and photo. The File_Case has seven columns: file_case_id (primary key), suspect_id (foreign key), police_station_id (foreign key), investigator_id (foreign key), victim_id (foreign key), status, and description. Here, you will also design a Java GUI to display, edit, fill, and delete data in both tables. Finally, this book is hopefully useful for you.

JAVA GUI WITH MYSQL: Database and Image Processing

JAVA GUI WITH MYSQL: Database and Image Processing PDF Author: Vivian Siahaan
Publisher: SPARTA PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 325

Get Book Here

Book Description
In this book, you will learn how to build from scratch a criminal records management database system using Java / MySQL. All Java code for digital image processing in this book is Native Java. Intentionally not to rely on external libraries, so that readers know in detail the process of extracting digital images from scratch in Java. There are only three external libraries used in this book: Connector / J to facilitate Java to MySQL connections, JCalendar to display calendar controls, and JFreeChart to display graphics. Digital image techniques to extract image features used in this book are grascaling, sharpening, invertering, blurring, dilation, erosion, closing, opening, vertical prewitt, horizontal prewitt, Laplacian, horizontal sobel, and vertical sobel. For readers, you can develop it to store other advanced image features based on descriptors such as SIFT and others for developing descriptor based matching. In the first chapter, you will be shown the number of devices needed to be downloaded and installed. You need to know how to add external libraries to the NetBeans environment. These tools are needed so that you can run the Java scripts. In the second chapter, you will be taught how to create Crime database and its tables. In third chapter, you will be taught how to extract image features, utilizing BufferedImage class, in Java GUI. In the fourth chapter, you will be taught to create Java GUI to view, edit, insert, and delete Suspect table data. This table has eleven columns: suspect_id (primary key), suspect_name, birth_date, case_date, report_date, suspect_ status, arrest_date, mother_name, address, telephone, and photo. In the fifth chapter, you will be taught to create Java GUI to view, edit, insert, and delete Feature_Extraction table data. This table has eight columns: feature_id (primary key), suspect_id (foreign key), feature1, feature2, feature3, feature4, feature5, and feature6. All six fields (except keys) will have a BLOB data type, so that the image of the feature will be directly saved into this table. In the sixth chapter, you will add two tables: Police_Station and Investigator. These two tables will later be joined to Suspect table through another table, File_Case, which will be built in the seventh chapter. The Police_Station has six columns: police_station_id (primary key), location, city, province, telephone, and photo. The Investigator has eight columns: investigator_id (primary key), investigator_name, rank, birth_date, gender, address, telephone, and photo. Here, you will design a Java GUI to display, edit, fill, and delete data in both tables. In the seventh chapter, you will add two tables: Victim and File_Case. The File_Case table will connect four other tables: Suspect, Police_Station, Investigator and Victim. The Victim table has nine columns: victim_id (primary key), victim_name, crime_type, birth_date, crime_date, gender, address, telephone, and photo. The File_Case has seven columns: file_case_id (primary key), suspect_id (foreign key), police_station_id (foreign key), investigator_id (foreign key), victim_id (foreign key), status, and description. Here, you will also design a Java GUI to display, edit, fill, and delete data in both tables. Finally, this book is hopefully useful for you.

LEARN FROM SCRATCH SIGNAL AND IMAGE PROCESSING WITH PYTHON GUI

LEARN FROM SCRATCH SIGNAL AND IMAGE PROCESSING WITH PYTHON GUI PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 372

Get Book Here

Book Description
In this book, you will learn how to use OpenCV, NumPy library and other libraries to perform signal processing, image processing, object detection, and feature extraction with Python GUI (PyQt). You will learn how to filter signals, detect edges and segments, and denoise images with PyQt. You will also learn how to detect objects (face, eye, and mouth) using Haar Cascades and how to detect features on images using Harris Corner Detection, Shi-Tomasi Corner Detector, Scale-Invariant Feature Transform (SIFT), and Features from Accelerated Segment Test (FAST). In Chapter 1, you will learn: Tutorial Steps To Create A Simple GUI Application, Tutorial Steps to Use Radio Button, Tutorial Steps to Group Radio Buttons, Tutorial Steps to Use CheckBox Widget, Tutorial Steps to Use Two CheckBox Groups, Tutorial Steps to Understand Signals and Slots, Tutorial Steps to Convert Data Types, Tutorial Steps to Use Spin Box Widget, Tutorial Steps to Use ScrollBar and Slider, Tutorial Steps to Use List Widget, Tutorial Steps to Select Multiple List Items in One List Widget and Display It in Another List Widget, Tutorial Steps to Insert Item into List Widget, Tutorial Steps to Use Operations on Widget List, Tutorial Steps to Use Combo Box, Tutorial Steps to Use Calendar Widget and Date Edit, and Tutorial Steps to Use Table Widget. In Chapter 2, you will learn: Tutorial Steps To Create A Simple Line Graph, Tutorial Steps To Create A Simple Line Graph in Python GUI, Tutorial Steps To Create A Simple Line Graph in Python GUI: Part 2, Tutorial Steps To Create Two or More Graphs in the Same Axis, Tutorial Steps To Create Two Axes in One Canvas, Tutorial Steps To Use Two Widgets, Tutorial Steps To Use Two Widgets, Each of Which Has Two Axes, Tutorial Steps To Use Axes With Certain Opacity Levels, Tutorial Steps To Choose Line Color From Combo Box, Tutorial Steps To Calculate Fast Fourier Transform, Tutorial Steps To Create GUI For FFT, Tutorial Steps To Create GUI For FFT With Some Other Input Signals, Tutorial Steps To Create GUI For Noisy Signal, Tutorial Steps To Create GUI For Noisy Signal Filtering, and Tutorial Steps To Create GUI For Wav Signal Filtering. In Chapter 3, you will learn: Tutorial Steps To Convert RGB Image Into Grayscale, Tutorial Steps To Convert RGB Image Into YUV Image, Tutorial Steps To Convert RGB Image Into HSV Image, Tutorial Steps To Filter Image, Tutorial Steps To Display Image Histogram, Tutorial Steps To Display Filtered Image Histogram, Tutorial Steps To Filter Image With CheckBoxes, Tutorial Steps To Implement Image Thresholding, and Tutorial Steps To Implement Adaptive Image Thresholding. In Chapter 4, you will learn: Tutorial Steps To Generate And Display Noisy Image, Tutorial Steps To Implement Edge Detection On Image, Tutorial Steps To Implement Image Segmentation Using Multiple Thresholding and K-Means Algorithm, and Tutorial Steps To Implement Image Denoising. In Chapter 5, you will learn: Tutorial Steps To Detect Face, Eye, and Mouth Using Haar Cascades, Tutorial Steps To Detect Face Using Haar Cascades with PyQt, Tutorial Steps To Detect Eye, and Mouth Using Haar Cascades with PyQt, and Tutorial Steps To Extract Detected Objects. In Chapter 6, you will learn: Tutorial Steps To Detect Image Features Using Harris Corner Detection, Tutorial Steps To Detect Image Features Using Shi-Tomasi Corner Detection, Tutorial Steps To Detect Features Using Scale-Invariant Feature Transform (SIFT), and Tutorial Steps To Detect Features Using Features from Accelerated Segment Test (FAST). You can download the XML files from https://viviansiahaan.blogspot.com/2023/06/learn-from-scratch-signal-and-image.html.

SIX BOOKS IN ONE: Classification, Prediction, and Sentiment Analysis Using Machine Learning and Deep Learning with Python GUI

SIX BOOKS IN ONE: Classification, Prediction, and Sentiment Analysis Using Machine Learning and Deep Learning with Python GUI PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 1165

Get Book Here

Book Description
Book 1: BANK LOAN STATUS CLASSIFICATION AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project consists of more than 100,000 customers mentioning their loan status, current loan amount, monthly debt, etc. There are 19 features in the dataset. The dataset attributes are as follows: Loan ID, Customer ID, Loan Status, Current Loan Amount, Term, Credit Score, Annual Income, Years in current job, Home Ownership, Purpose, Monthly Debt, Years of Credit History, Months since last delinquent, Number of Open Accounts, Number of Credit Problems, Current Credit Balance, Maximum Open Credit, Bankruptcies, and Tax Liens. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. Book 2: OPINION MINING AND PREDICTION USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI Opinion mining (sometimes known as sentiment analysis or emotion AI) refers to the use of natural language processing, text analysis, computational linguistics, and biometrics to systematically identify, extract, quantify, and study affective states and subjective information. This dataset was created for the Paper 'From Group to Individual Labels using Deep Features', Kotzias et. al,. KDD 2015. It contains sentences labelled with a positive or negative sentiment. Score is either 1 (for positive) or 0 (for negative). The sentences come from three different websites/fields: imdb.com, amazon.com, and yelp.com. For each website, there exist 500 positive and 500 negative sentences. Those were selected randomly for larger datasets of reviews. Amazon: contains reviews and scores for products sold on amazon.com in the cell phones and accessories category, and is part of the dataset collected by McAuley and Leskovec. Scores are on an integer scale from 1 to 5. Reviews considered with a score of 4 and 5 to be positive, and scores of 1 and 2 to be negative. The data is randomly partitioned into two halves of 50%, one for training and one for testing, with 35,000 documents in each set. IMDb: refers to the IMDb movie review sentiment dataset originally introduced by Maas et al. as a benchmark for sentiment analysis. This dataset contains a total of 100,000 movie reviews posted on imdb.com. There are 50,000 unlabeled reviews and the remaining 50,000 are divided into a set of 25,000 reviews for training and 25,000 reviews for testing. Each of the labeled reviews has a binary sentiment label, either positive or negative. Yelp: refers to the dataset from the Yelp dataset challenge from which we extracted the restaurant reviews. Scores are on an integer scale from 1 to 5. Reviews considered with scores 4 and 5 to be positive, and 1 and 2 to be negative. The data is randomly generated a 50-50 training and testing split, which led to approximately 300,000 documents for each set. Sentences: for each of the datasets above, labels are extracted and manually 1000 sentences are manually labeled from the test set, with 50% positive sentiment and 50% negative sentiment. These sentences are only used to evaluate our instance-level classifier for each dataset3. They are not used for model training, to maintain consistency with our overall goal of learning at a group level and predicting at the instance level. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. Book 3: EMOTION PREDICTION FROM TEXT USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI In the dataset used in this project, there are two columns, Text and Emotion. Quite self-explanatory. The Emotion column has various categories ranging from happiness to sadness to love and fear. You will build and implement machine learning and deep learning models which can identify what words denote what emotion. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. Book 4: HATE SPEECH DETECTION AND SENTIMENT ANALYSIS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI The objective of this task is to detect hate speech in tweets. For the sake of simplicity, a tweet contains hate speech if it has a racist or sexist sentiment associated with it. So, the task is to classify racist or sexist tweets from other tweets. Formally, given a training sample of tweets and labels, where label '1' denotes the tweet is racist/sexist and label '0' denotes the tweet is not racist/sexist, the objective is to predict the labels on the test dataset. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, LSTM, and CNN. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. Book 5: TRAVEL REVIEW RATING CLASSIFICATION AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project has been sourced from the Machine Learning Repository of University of California, Irvine (UC Irvine): Travel Review Ratings Data Set. This dataset is populated by capturing user ratings from Google reviews. Reviews on attractions from 24 categories across Europe are considered. Google user rating ranges from 1 to 5 and average user rating per category is calculated. The attributes in the dataset are as follows: Attribute 1 : Unique user id; Attribute 2 : Average ratings on churches; Attribute 3 : Average ratings on resorts; Attribute 4 : Average ratings on beaches; Attribute 5 : Average ratings on parks; Attribute 6 : Average ratings on theatres; Attribute 7 : Average ratings on museums; Attribute 8 : Average ratings on malls; Attribute 9 : Average ratings on zoo; Attribute 10 : Average ratings on restaurants; Attribute 11 : Average ratings on pubs/bars; Attribute 12 : Average ratings on local services; Attribute 13 : Average ratings on burger/pizza shops; Attribute 14 : Average ratings on hotels/other lodgings; Attribute 15 : Average ratings on juice bars; Attribute 16 : Average ratings on art galleries; Attribute 17 : Average ratings on dance clubs; Attribute 18 : Average ratings on swimming pools; Attribute 19 : Average ratings on gyms; Attribute 20 : Average ratings on bakeries; Attribute 21 : Average ratings on beauty & spas; Attribute 22 : Average ratings on cafes; Attribute 23 : Average ratings on view points; Attribute 24 : Average ratings on monuments; and Attribute 25 : Average ratings on gardens. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, and MLP classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. Book 6: ONLINE RETAIL CLUSTERING AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project is a transnational dataset which contains all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail. The company mainly sells unique all-occasion gifts. Many customers of the company are wholesalers. You will be using the online retail transnational dataset to build a RFM clustering and choose the best set of customers which the company should target. In this project, you will perform Cohort analysis and RFM analysis. You will also perform clustering using K-Means to get 5 clusters. The machine learning models used in this project to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.

Step by Step Tutorial IMAGE CLASSIFICATION Using Scikit-Learn, Keras, And TensorFlow with PYTHON GUI

Step by Step Tutorial IMAGE CLASSIFICATION Using Scikit-Learn, Keras, And TensorFlow with PYTHON GUI PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 211

Get Book Here

Book Description
In this book, implement deep learning-based image classification on classifying monkey species, recognizing rock, paper, and scissor, and classify airplane, car, and ship using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify monkey species using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/slothkong/10-monkey-species/download). Here's an overview of the steps involved in classifying monkey species using the 10 Monkey Species dataset: Dataset Preparation: Download the 10 Monkey Species dataset from Kaggle and extract the files. The dataset should consist of separate folders for each monkey species, with corresponding images.; Load and Preprocess Images: Use libraries such as OpenCV to load the images from the dataset. Resize the images to a consistent size (e.g., 224x224 pixels) to ensure uniformity.; Split the Dataset: Divide the dataset into training and testing sets. Typically, an 80:20 or 70:30 split is used, where the larger portion is used for training and the smaller portion for testing the model's performance.; Label Encoding: Encode the categorical labels (monkey species) into numeric form. This step is necessary to train a machine learning model, as most algorithms expect numerical inputs.; Feature Extraction: Extract meaningful features from the images using techniques like deep learning or image processing algorithms. This step helps in representing the images in a format that the machine learning model can understand.; Model Training: Use libraries like TensorFlow and Keras to train a machine learning model on the preprocessed data. Choose an appropriate model architecture, in this case, MobileNetV2.; Model Evaluation: Evaluate the trained model on the testing set to assess its performance. Metrics like accuracy, precision, recall, and F1-score can be used to evaluate the model's classification performance.; Predictions: Use the trained model to make predictions on new, unseen images. Pass the images through the trained model and obtain the predicted labels for the monkey species. In chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to recognize rock, paper, and scissor using dataset provided by Kaggle (https://www.kaggle.com/sanikamal/rock-paper-scissors-dataset/download). Here's the outline of the steps: Step 1: Dataset Preparation: Download the rock-paper-scissors dataset from Kaggle by visiting the provided link and clicking on the "Download" button. Save the dataset to a local directory on your machine. Extract the downloaded dataset to a suitable location. This will create a folder containing the images for rock, paper, and scissors.; Step 2: Data Preprocessing: Import the required libraries: TensorFlow, Keras, NumPy, OpenCV, and Pandas. Load the dataset using OpenCV: Iterate through the image files in the dataset directory and use OpenCV's cv2.imread() function to load each image. You can specify the image's file extension (e.g., PNG) and directory path. Preprocess the images: Resize the loaded images to a consistent size using OpenCV's cv2.resize() function. You may choose a specific width and height suitable for your model. Prepare the labels: Create a list or array to store the corresponding labels for each image (rock, paper, or scissors). This can be done based on the file naming convention or by mapping images to their respective labels using a dictionary.; Step 3: Model Training: Create a convolutional neural network (CNN) model using Keras: Define a CNN architecture using Keras' Sequential model or functional API. This typically consists of convolutional layers, pooling layers, and dense layers. Compile the model: Specify the loss function (e.g., categorical cross-entropy) and optimizer (e.g., Adam) using Keras' compile() function. You can also define additional metrics to evaluate the model's performance. Train the model: Use Keras' fit() function to train the model on the preprocessed dataset. Specify the training data, labels, batch size, number of epochs, and validation data if available. This will optimize the model's weights based on the provided dataset. Save the trained model: Once the model training is complete, you can save the trained model to disk using Keras' save() or save_weights() function. This allows you to load the model later for predictions or further training.; Step 4: Model Evaluation: Evaluate the trained model: Use Keras' evaluate() function to assess the model's performance on a separate testing dataset. Provide the testing data and labels to calculate metrics such as accuracy, precision, recall, and F1 score. This will help you understand how well the model generalizes to new, unseen data. Analyze the model's performance: Interpret the evaluation metrics and analyze any potential areas of improvement. You can also visualize the confusion matrix or classification report to gain more insights into the model's predictions.; Step 5: Prediction: Use the trained model for predictions: Load the saved model using Keras' load_model() function. Then, pass new, unseen images through the model to obtain predictions. Preprocess these images in the same way as the training images (resize, normalize, etc.). Visualize and interpret predictions: Display the predicted labels alongside the corresponding images to see how well the model performs. You can use libraries like Matplotlib or OpenCV to show the images and their predicted labels. Additionally, you can calculate the accuracy of the model's predictions on the new dataset. In chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify airplane, car, and ship using Multiclass-image-dataset-airplane-car-ship dataset provided by Kaggle (https://www.kaggle.com/abtabm/multiclassimagedatasetairplanecar). Here are the outline steps: Import the required libraries: TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy. Load and preprocess the dataset: Read the images from the dataset folder. Resize the images to a fixed size. Store the images and corresponding labels.; Split the dataset into training and testing sets: Split the data and labels into training and testing sets using a specified ratio.; Encode the labels: Convert the categorical labels into numerical format. Perform one-hot encoding on the labels.; Build MobileNetV2 model using Keras: Create a sequential model. Add convolutional layers with activation functions. Add pooling layers for downsampling. Flatten the output and add dense layers. Set the output layer with softmax activation.; Compile and train the model: Compile the model with an optimizer and loss function. Train the model using the training data and labels. Specify the number of epochs and batch size.; Evaluate the model: Evaluate the trained model using the testing data and labels. Calculate the accuracy of the model.; Make predictions on new images: Load and preprocess a new image. Use the trained model to predict the label of the new image. Convert the predicted label from numerical format to categorical.

Hands-On Guide To IMAGE CLASSIFICATION Using Scikit-Learn, Keras, And TensorFlow with PYTHON GUI

Hands-On Guide To IMAGE CLASSIFICATION Using Scikit-Learn, Keras, And TensorFlow with PYTHON GUI PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 210

Get Book Here

Book Description
In this book, implement deep learning on detecting face mask, classifying weather, and recognizing flower using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting face mask using Face Mask Detection Dataset provided by Kaggle (https://www.kaggle.com/omkargurav/face-mask-dataset/download). Here's an overview of the steps involved in detecting face masks using the Face Mask Detection Dataset: Import the necessary libraries: Import the required libraries like TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, and NumPy.; Load and preprocess the dataset: Load the dataset and perform any necessary preprocessing steps, such as resizing images and converting labels into numeric representations.; Split the dataset: Split the dataset into training and testing sets using the train_test_split function from Scikit-Learn. This will allow us to evaluate the model's performance on unseen data.; Data augmentation (optional): Apply data augmentation techniques to artificially increase the size and diversity of the training set. Techniques like rotation, zooming, and flipping can help improve the model's generalization.; Build the model: Create a Convolutional Neural Network (CNN) model using TensorFlow and Keras. Design the architecture of the model, including the number and type of layers.; Compile the model: Compile the model by specifying the loss function, optimizer, and evaluation metrics. This prepares the model for training. Train the model: Train the model on the training dataset. Adjust the hyperparameters, such as the learning rate and number of epochs, to achieve optimal performance.; Evaluate the model: Evaluate the trained model on the testing dataset to assess its performance. Calculate metrics such as accuracy, precision, recall, and F1 score.; Make predictions: Use the trained model to make predictions on new images or video streams. Apply the face mask detection algorithm to identify whether a person is wearing a mask or not.; Visualize the results: Visualize the predictions by overlaying bounding boxes or markers on the images or video frames to indicate the presence or absence of face masks. In chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify weather using Multi-class Weather Dataset provided by Kaggle (https://www.kaggle.com/pratik2901/multiclass-weather-dataset/download). To classify weather using the Multi-class Weather Dataset from Kaggle, you can follow these general steps: Load the dataset: Use libraries like Pandas or NumPy to load the dataset into memory. Explore the dataset to understand its structure and the available features.; Preprocess the data: Perform necessary preprocessing steps such as data cleaning, handling missing values, and feature engineering. This may include resizing images (if the dataset contains images) or encoding categorical variables.; Split the data: Split the dataset into training and testing sets. The training set will be used to train the model, and the testing set will be used for evaluating its performance.; Build a model: Utilize TensorFlow and Keras to define a suitable model architecture for weather classification. The choice of model depends on the type of data you have. For image data, convolutional neural networks (CNNs) often work well.; Train the model: Train the model using the training data. Use appropriate training techniques like gradient descent and backpropagation to optimize the model's weights.; Evaluate the model: Evaluate the trained model's performance using the testing data. Calculate metrics such as accuracy, precision, recall, or F1-score to assess how well the model performs.; Fine-tune the model: If the model's performance is not satisfactory, you can experiment with different hyperparameters, architectures, or regularization techniques to improve its performance. This process is called model tuning.; Make predictions: Once you are satisfied with the model's performance, you can use it to make predictions on new, unseen data. Provide the necessary input (e.g., an image or weather features) to the trained model, and it will predict the corresponding weather class. In chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to recognize flower using Flowers Recognition dataset provided by Kaggle (https://www.kaggle.com/alxmamaev/flowers-recognition/download). Here are the general steps involved in recognizing flowers: Data Preparation: Download the Flowers Recognition dataset from Kaggle and extract the contents. Import the required libraries and define the dataset path and image dimensions.; Loading and Preprocessing the Data: Load the images and their corresponding labels from the dataset. Resize the images to a specific dimension. Perform label encoding on the flower labels and split the data into training and testing sets. Normalize the pixel values of the images.; Building the Model: Define the architecture of your model using TensorFlow's Keras API. You can choose from various neural network architectures such as CNNs, ResNet, or InceptionNet. The model architecture should be designed to handle image inputs and output the predicted flower class..; Compiling and Training the Model: Compile the model by specifying the loss function, optimizer, and evaluation metrics. Common choices include categorical cross-entropy loss and the Adam optimizer. Train the model using the training set and validate it using the testing set. Adjust the hyperparameters, such as the learning rate and number of epochs, to improve performance.; Model Evaluation: Evaluate the trained model on the testing set to measure its performance. Calculate metrics such as accuracy, precision, recall, and F1-score to assess how well the model is recognizing flower classes.; Prediction: Use the trained model to predict the flower class for new images. Load and preprocess the new images in a similar way to the training data. Pass the preprocessed images through the trained model and obtain the predicted flower class labels.; Further Improvements: If the model's performance is not satisfactory, consider experimenting with different architectures, hyperparameters, or techniques such as data augmentation or transfer learning. Fine-tuning the model or using ensembles of models can also improve accuracy.

OPTICAL FLOW ANALYSIS AND MOTION ESTIMATION IN DIGITAL VIDEO WITH PYTHON AND TKINTER

OPTICAL FLOW ANALYSIS AND MOTION ESTIMATION IN DIGITAL VIDEO WITH PYTHON AND TKINTER PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 181

Get Book Here

Book Description
The first project, the GUI motion analysis tool gui_motion_analysis_fsbm.py, employs the Full Search Block Matching (FSBM) algorithm to analyze motion in videos. It imports essential libraries like tkinter, PIL, imageio, cv2, and numpy for GUI creation, image manipulation, video reading, computer vision tasks, and numerical computations. The script organizes its functionalities within the VideoFSBMOpticalFlow class, managing GUI elements through methods like create_widgets() for layout management, open_video() for video selection, and toggle_play_pause() for video playback control. It employs the FSBM algorithm for optical flow estimation, utilizing methods like full_search_block_matching() for motion vector calculation and show_optical_flow() for displaying motion patterns. Ultimately, by combining user-friendly controls with powerful analytical capabilities, the script facilitates efficient motion analysis in videos. The second project gui_motion_analysis_fsbm_dsa.py aims to provide a comprehensive solution for optical flow analysis through a user-friendly graphical interface. Leveraging the Full Search Block Matching (FSBM) algorithm with the Diamond Search Algorithm (DSA) optimization, it enables users to estimate motion patterns within video sequences efficiently. By integrating these algorithms into a GUI environment built with Tkinter, the script facilitates intuitive exploration and analysis of motion dynamics in various applications such as object tracking, video compression, and robotics. Key features include video file input, playback control, parameter adjustment, zooming capabilities, and optical flow visualization. Users can interactively analyze videos frame by frame, adjust algorithm parameters to tailor performance, and zoom in on specific regions of interest for detailed examination. Error handling mechanisms ensure robustness, while support for multiple instances enables simultaneous analysis of multiple videos. In essence, the project empowers users to gain insights into motion behaviors within video content, enhancing their ability to make informed decisions in diverse fields reliant on optical flow analysis. The third project "Optical Flow Analysis with Three-Step Search (TSS)" is dedicated to offering a user-friendly graphical interface for motion analysis in video sequences through the application of the Three-Step Search (TSS) algorithm. Optical flow analysis, pivotal in computer vision, facilitates tasks like video surveillance and object tracking. The implementation of TSS within the GUI environment allows users to efficiently estimate motion, empowering them with tools for detailed exploration and understanding of motion dynamics. Through its intuitive graphical interface, the project enables users to interactively engage with video content, from opening and previewing video files to controlling playback and navigating frames. Furthermore, it facilitates parameter customization, allowing users to fine-tune settings such as zoom scale and block size for tailored optical flow analysis. By overlaying visualizations of motion vectors on video frames, users gain insights into motion patterns, fostering deeper comprehension and analysis. Additionally, the project promotes community collaboration, serving as an educational resource and a platform for benchmarking different optical flow algorithms, ultimately advancing the field of computer vision technology. The fourth project gui_motion_analysis_bgds.py is developed with the primary objective of providing a user-friendly graphical interface (GUI) application for analyzing optical flow within video sequences, utilizing the Block-based Gradient Descent Search (BGDS) algorithm. Its purpose is to facilitate comprehensive exploration and understanding of motion patterns in video data, catering to diverse domains such as computer vision, video surveillance, and human-computer interaction. By offering intuitive controls and interactive functionalities, the application empowers users to delve into the intricacies of motion dynamics, aiding in research, education, and practical applications. Through the GUI interface, users can seamlessly open and analyze video files, spanning formats like MP4, AVI, or MKV, thus enabling thorough examination of motion behaviors within different contexts. The application supports essential features such as video playback control, zoom adjustment, frame navigation, and parameter customization. Leveraging the BGDS algorithm, motion vectors are computed at the block level, furnishing users with detailed insights into motion characteristics across successive frames. Additionally, the GUI facilitates real-time visualization of computed optical flow fields alongside original video frames, enhancing users' ability to interpret and analyze motion information effectively. With support for multiple instances and configurable parameters, the application caters to a broad spectrum of users, serving as a versatile tool for motion analysis endeavors in various professional and academic endeavors. The fifth project gui_motion_analysis_hbm2.py serves as a comprehensive graphical user interface (GUI) application tailored for optical flow analysis in video files. Leveraging the Tkinter library, it provides a user-friendly platform for scrutinizing the apparent motion of objects between consecutive frames, essential for various applications like object tracking and video compression. The algorithm of choice for optical flow analysis is the Hierarchical Block Matching (HBM) technique enhanced with the Three-Step Search (TSS) optimization, renowned for its effectiveness in motion estimation tasks. Primarily, the GUI layout encompasses a video display panel alongside control buttons facilitating actions such as video file opening, playback control, frame navigation, and parameter specification for optical flow analysis. Users can seamlessly open supported video files (e.g., MP4, AVI, MKV) and adjust parameters like zoom scale, step size, block size, and search range to tailor the analysis according to their needs. Through interactive features like zooming, panning, and dragging to manipulate the optical flow visualization, users gain insights into motion patterns with ease. Furthermore, the application supports additional functionalities such as time-based navigation, parallel analysis through multiple instances, ensuring a versatile and user-centric approach to optical flow analysis. The sixth project object_tracking_fsbm.py is designed to showcase object tracking capabilities using the Full Search Block Matching Algorithm (FSBM) within a user-friendly graphical interface (GUI) developed with Tkinter. By integrating this algorithm with a robust GUI, the project aims to offer a practical demonstration of object tracking techniques commonly utilized in computer vision applications. Upon execution, the script initializes a Tkinter window and sets up essential widgets for video display, playback control, and parameter adjustment. Users can seamlessly open video files in various formats and navigate through frames with intuitive controls, facilitating efficient analysis and tracking of objects. Leveraging the FSBM algorithm, object tracking is achieved by comparing pixel blocks between consecutive frames to estimate motion vectors, enabling real-time visualization of object movements within the video stream. The GUI provides interactive features like bounding box initialization, parameter adjustment, and zoom functionality, empowering users to fine-tune the tracking process and analyze objects with precision. Overall, the project serves as a comprehensive platform for object tracking, combining algorithmic prowess with an intuitive interface for effective analysis and visualization of object motion in video streams. The seventh project showcases an object tracking application seamlessly integrated with a graphical user interface (GUI) developed using Tkinter. Users can effortlessly interact with video files of various formats (MP4, AVI, MKV, WMV) through intuitive controls such as play, pause, and stop for video playback, as well as frame-by-frame navigation. The GUI further enhances user experience by providing zoom functionality for detailed examination of video content, contributing to a comprehensive and user-friendly environment. Central to the application is the implementation of the Diamond Search Algorithm (DSA) for object tracking, enabling the calculation of motion vectors between consecutive frames. These motion vectors facilitate the dynamic adjustment of a bounding box around the tracked object, offering visual feedback to users. Leveraging event handling mechanisms like mouse wheel scrolling and button press-and-drag, along with error handling for smooth operation, the project demonstrates the practical fusion of computer vision techniques with GUI development, exemplifying the real-world application of algorithms like DSA in object tracking scenarios. The eight project aims to provide an interactive graphical user interface (GUI) application for object tracking, employing the Three-Step Search (TSS) algorithm for motion estimation. The ObjectTrackingFSBM_TSS class defines the GUI layout, featuring essential widgets for video display, control buttons, and parameter inputs for block size and search range. Users can effortlessly interact with the application, from opening video files to controlling video playback and adjusting tracking parameters, facilitating seamless exploration of object motion within video sequences. Central to the application's functionality are the full_search_block_matching_tss() and track_object() methods, responsible for implementing the TSS algorithm and object tracking process, respectively. The full_search_block_matching_tss() method iterates over blocks in consecutive frames, utilizing TSS to calculate motion vectors. These vectors are then used in the track_object() method to update the bounding box around the object of interest, enabling real-time tracking. The GUI dynamically displays video frames and updates the bounding box position, providing users with a comprehensive tool for interactive object tracking and motion analysis. The ninth project encapsulates an object tracking application utilizing the Block-based Gradient Descent Search (BGDS) algorithm, providing users with a user-friendly interface developed using the Tkinter library for GUI and OpenCV for video processing. Upon initialization, the class orchestrates the setup of GUI components, offering intuitive controls for video manipulation and parameter configuration to enhance the object tracking process. Users can seamlessly open video files, control video playback, and adjust algorithm parameters such as block size, search range, iteration limit, and learning rate, empowering them with comprehensive tools for efficient motion estimation. The application's core functionality lies in the block_based_gradient_descent_search() method, implementing the BGDS algorithm for motion estimation by iteratively optimizing motion vectors over blocks in consecutive frames. Leveraging these vectors, the track_object() method dynamically tracks objects within a bounding box, computing mean motion vectors to update bounding box coordinates in real-time. Additionally, interactive features enable users to define bounding boxes around objects of interest through mouse events, facilitating seamless object tracking visualization. Overall, the ObjectTracking_BGDS class offers a versatile and user-friendly platform for object tracking, showcasing the practical application of the BGDS algorithm in real-world scenarios with enhanced ease of use and efficiency.

SQLITE QUERIES, ANALYSIS, AND VISUALIZATION WITH PYTHON

SQLITE QUERIES, ANALYSIS, AND VISUALIZATION WITH PYTHON PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 48

Get Book Here

Book Description
Sakila for SQLite is a part of the sakila-sample-database-ports project intended to provide ported versions of the original MySQL database for other database systems, including: Oracle, SQL Server, SQLite, Interbase/Firebird, and Microsoft Access. Sakila for SQLite is a port of the Sakila example database available for MySQL, which was originally developed by Mike Hillyer of the MySQL AB documentation team. The project is designed to help database administrators to decide which database to use for development of new products. In this project, you will: read sqlite database and every table in it; read every actor in actor table, read every film in films table; plot case distribution of film release year, film rating, rental duration, and categorize film length; plot rating variable against rental_duration variable in stacked bar plots; plot length variable against rental_duration variable in stacked bar plots; read payment table; plot case distribution of Year, Day, Month, Week, and Quarter of payment; plot which year, month, week, days of week, and quarter have most payment amount; read film list by joining five tables: category, film_category, film_actor, film, and actor; plot case distribution of top 10 and bottom 10 actors; plot which film title have least and most sales; plot which actor have least and most sales; plot which film category have least and most sales; plot case distribution of top 10 and bottom 10 overdue costumers; plot which customer have least and most overdue days; plot which store have most sales; plot average payment amount by month with mean and EWM; and plot payment amount over June 2005.