Author: J. Kapusta
Publisher: Gulf Professional Publishing
ISBN: 9780444511102
Category : Science
Languages : en
Pages : 850
Book Description
The purpose of this volume is to trace the development of the theoretical understanding of quark-gluon plasma, both in terms of the equation of state and thermal correlation functions and in terms of its manifestation in high energy nuclear collisions. Who among us has not wondered how tall a mountain is on a neutron star, what happens when matter is heated and compressed to higher and higher densities, what happens when an object falls into a black hole, or what happened eons ago in the early universe? The study of quark-gluon plasma is related in one way or another to these and other thought provoking questions. Oftentimes the most eloquent exposition is given in the original papers. To this end a selection is made of what are the most important pioneering papers in this field. The early 1950s was an era when high energy multiparticle production in cosmic ray interactions attracted the attention of some of the brightest minds in physics, and so it should be no surprise that the first reprinted papers deal with the introduction of statistical models of particle production. The quark model arose in the 1960s, while QCD as such was recognized as the theory of the strong interactions in the 1970's. The behavior of matter at high temperatures and supranuclear densities became of wide interest in the nuclear and particle physics communities starting in the 1970s, which is when the concept of quark-gluon plasma became established. The history of the field has been traced up to the early 1990s. There are three reasons for stopping at that point in time. First, most of the key theoretical concepts and formalisms arose before 1993, although many of them continue to be developed today and hopefully well into the future. Second, papers written after 1992 are much more readily available than those writen before due to the advent of the World Wide Web and its electronic preprint databases and journals. Finally, in making this collection of reprints available as hardcopy one is limited in the number of pages, and some papers in the present selection should have been deleted in order to make room for post-1993 papers. For the same reason the subject focus must of necessity be limited, which means that in this reprint collection two wide subject areas are not addressed: the behavior of nuclear matter under extreme conditions is not reported, nor is quark matter in neutron stars. The broad categories into which the material has been placed, reflect the diverse studies of quark-gluon plasma and its manifestation. They are: phase-space models of particle production, perturbative QCD plasma, lattice gauge theory, fluid dynamics and flow, strangeness, heavy flavor (charm), electromagnetic signals, parton cascade and minijets, parton energy loss and jet quenching, Hanbury Brown--Twiss (HBT) interferometry, disoriented chiral condensates, phase transition dynamics and cosmology, and color superconductivity. Each chapter is prefaced by an introduction, which contains a list of significant papers which is more complete than the reprinted papers, though by no means exhaustive. It also contains citations to most relevant papers published up to the date of completion of this volume (fall 2002). It is hoped that the short reviews will help bring the reader up to date on the latest developments. The selection of papers cited in each chapter, and in particular the ones selected for reprinting, is solely the responsibility of the Editors. It is based on their best judgement and experience in this field dating back to the mid-1970s. In order to be reprinted a paper must have been pioneering in the sense of originality and impact on the field. Generally they have been cited over a hundred times by other papers published in refereed journals. The final selection was reviewed and discussed among the Editors repeatedly. Just because a paper is not included does not mean they do not know of it or do not have a high regard for it. All of the papers cited or reprinted are original research contributions. There are three other types of publications listed. The first is a compilation of books. The second is a list of reviews, many of which contain a significant amount of original material. The third is a list of the proceedings of the series of Quark Matter meetings, the primary series of international conferences in this field that is attended by both theorists and experimentalists.
Quark-Gluon Plasma: Theoretical Foundations
Author: J. Kapusta
Publisher: Gulf Professional Publishing
ISBN: 9780444511102
Category : Science
Languages : en
Pages : 850
Book Description
The purpose of this volume is to trace the development of the theoretical understanding of quark-gluon plasma, both in terms of the equation of state and thermal correlation functions and in terms of its manifestation in high energy nuclear collisions. Who among us has not wondered how tall a mountain is on a neutron star, what happens when matter is heated and compressed to higher and higher densities, what happens when an object falls into a black hole, or what happened eons ago in the early universe? The study of quark-gluon plasma is related in one way or another to these and other thought provoking questions. Oftentimes the most eloquent exposition is given in the original papers. To this end a selection is made of what are the most important pioneering papers in this field. The early 1950s was an era when high energy multiparticle production in cosmic ray interactions attracted the attention of some of the brightest minds in physics, and so it should be no surprise that the first reprinted papers deal with the introduction of statistical models of particle production. The quark model arose in the 1960s, while QCD as such was recognized as the theory of the strong interactions in the 1970's. The behavior of matter at high temperatures and supranuclear densities became of wide interest in the nuclear and particle physics communities starting in the 1970s, which is when the concept of quark-gluon plasma became established. The history of the field has been traced up to the early 1990s. There are three reasons for stopping at that point in time. First, most of the key theoretical concepts and formalisms arose before 1993, although many of them continue to be developed today and hopefully well into the future. Second, papers written after 1992 are much more readily available than those writen before due to the advent of the World Wide Web and its electronic preprint databases and journals. Finally, in making this collection of reprints available as hardcopy one is limited in the number of pages, and some papers in the present selection should have been deleted in order to make room for post-1993 papers. For the same reason the subject focus must of necessity be limited, which means that in this reprint collection two wide subject areas are not addressed: the behavior of nuclear matter under extreme conditions is not reported, nor is quark matter in neutron stars. The broad categories into which the material has been placed, reflect the diverse studies of quark-gluon plasma and its manifestation. They are: phase-space models of particle production, perturbative QCD plasma, lattice gauge theory, fluid dynamics and flow, strangeness, heavy flavor (charm), electromagnetic signals, parton cascade and minijets, parton energy loss and jet quenching, Hanbury Brown--Twiss (HBT) interferometry, disoriented chiral condensates, phase transition dynamics and cosmology, and color superconductivity. Each chapter is prefaced by an introduction, which contains a list of significant papers which is more complete than the reprinted papers, though by no means exhaustive. It also contains citations to most relevant papers published up to the date of completion of this volume (fall 2002). It is hoped that the short reviews will help bring the reader up to date on the latest developments. The selection of papers cited in each chapter, and in particular the ones selected for reprinting, is solely the responsibility of the Editors. It is based on their best judgement and experience in this field dating back to the mid-1970s. In order to be reprinted a paper must have been pioneering in the sense of originality and impact on the field. Generally they have been cited over a hundred times by other papers published in refereed journals. The final selection was reviewed and discussed among the Editors repeatedly. Just because a paper is not included does not mean they do not know of it or do not have a high regard for it. All of the papers cited or reprinted are original research contributions. There are three other types of publications listed. The first is a compilation of books. The second is a list of reviews, many of which contain a significant amount of original material. The third is a list of the proceedings of the series of Quark Matter meetings, the primary series of international conferences in this field that is attended by both theorists and experimentalists.
Publisher: Gulf Professional Publishing
ISBN: 9780444511102
Category : Science
Languages : en
Pages : 850
Book Description
The purpose of this volume is to trace the development of the theoretical understanding of quark-gluon plasma, both in terms of the equation of state and thermal correlation functions and in terms of its manifestation in high energy nuclear collisions. Who among us has not wondered how tall a mountain is on a neutron star, what happens when matter is heated and compressed to higher and higher densities, what happens when an object falls into a black hole, or what happened eons ago in the early universe? The study of quark-gluon plasma is related in one way or another to these and other thought provoking questions. Oftentimes the most eloquent exposition is given in the original papers. To this end a selection is made of what are the most important pioneering papers in this field. The early 1950s was an era when high energy multiparticle production in cosmic ray interactions attracted the attention of some of the brightest minds in physics, and so it should be no surprise that the first reprinted papers deal with the introduction of statistical models of particle production. The quark model arose in the 1960s, while QCD as such was recognized as the theory of the strong interactions in the 1970's. The behavior of matter at high temperatures and supranuclear densities became of wide interest in the nuclear and particle physics communities starting in the 1970s, which is when the concept of quark-gluon plasma became established. The history of the field has been traced up to the early 1990s. There are three reasons for stopping at that point in time. First, most of the key theoretical concepts and formalisms arose before 1993, although many of them continue to be developed today and hopefully well into the future. Second, papers written after 1992 are much more readily available than those writen before due to the advent of the World Wide Web and its electronic preprint databases and journals. Finally, in making this collection of reprints available as hardcopy one is limited in the number of pages, and some papers in the present selection should have been deleted in order to make room for post-1993 papers. For the same reason the subject focus must of necessity be limited, which means that in this reprint collection two wide subject areas are not addressed: the behavior of nuclear matter under extreme conditions is not reported, nor is quark matter in neutron stars. The broad categories into which the material has been placed, reflect the diverse studies of quark-gluon plasma and its manifestation. They are: phase-space models of particle production, perturbative QCD plasma, lattice gauge theory, fluid dynamics and flow, strangeness, heavy flavor (charm), electromagnetic signals, parton cascade and minijets, parton energy loss and jet quenching, Hanbury Brown--Twiss (HBT) interferometry, disoriented chiral condensates, phase transition dynamics and cosmology, and color superconductivity. Each chapter is prefaced by an introduction, which contains a list of significant papers which is more complete than the reprinted papers, though by no means exhaustive. It also contains citations to most relevant papers published up to the date of completion of this volume (fall 2002). It is hoped that the short reviews will help bring the reader up to date on the latest developments. The selection of papers cited in each chapter, and in particular the ones selected for reprinting, is solely the responsibility of the Editors. It is based on their best judgement and experience in this field dating back to the mid-1970s. In order to be reprinted a paper must have been pioneering in the sense of originality and impact on the field. Generally they have been cited over a hundred times by other papers published in refereed journals. The final selection was reviewed and discussed among the Editors repeatedly. Just because a paper is not included does not mean they do not know of it or do not have a high regard for it. All of the papers cited or reprinted are original research contributions. There are three other types of publications listed. The first is a compilation of books. The second is a list of reviews, many of which contain a significant amount of original material. The third is a list of the proceedings of the series of Quark Matter meetings, the primary series of international conferences in this field that is attended by both theorists and experimentalists.
Experimental Techniques in Nuclear and Particle Physics
Author: Stefaan Tavernier
Publisher: Springer Science & Business Media
ISBN: 3642008291
Category : Science
Languages : en
Pages : 316
Book Description
I have been teaching courses on experimental techniques in nuclear and particle physics to master students in physics and in engineering for many years. This book grew out of the lecture notes I made for these students. The physics and engineering students have rather different expectations of what such a course should be like. I hope that I have nevertheless managed to write a book that can satisfy the needs of these different target audiences. The lectures themselves, of course, need to be adapted to the needs of each group of students. An engineering student will not qu- tion a statement like “the velocity of the electrons in atoms is ?1% of the velocity of light”, a physics student will. Regarding units, I have written factors h and c explicitly in all equations throughout the book. For physics students it would be preferable to use the convention that is common in physics and omit these constants in the equations, but that would probably be confusing for the engineering students. Physics students tend to be more interested in theoretical physics courses. However, physics is an experimental science and physics students should und- stand how experiments work, and be able to make experiments work. This is an open access book.
Publisher: Springer Science & Business Media
ISBN: 3642008291
Category : Science
Languages : en
Pages : 316
Book Description
I have been teaching courses on experimental techniques in nuclear and particle physics to master students in physics and in engineering for many years. This book grew out of the lecture notes I made for these students. The physics and engineering students have rather different expectations of what such a course should be like. I hope that I have nevertheless managed to write a book that can satisfy the needs of these different target audiences. The lectures themselves, of course, need to be adapted to the needs of each group of students. An engineering student will not qu- tion a statement like “the velocity of the electrons in atoms is ?1% of the velocity of light”, a physics student will. Regarding units, I have written factors h and c explicitly in all equations throughout the book. For physics students it would be preferable to use the convention that is common in physics and omit these constants in the equations, but that would probably be confusing for the engineering students. Physics students tend to be more interested in theoretical physics courses. However, physics is an experimental science and physics students should und- stand how experiments work, and be able to make experiments work. This is an open access book.
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 892
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 892
Book Description
International Conference on High Energy Physics/ International Union of Pure and Applied Physics, 24. 1988, München
Author: Rainer Kotthaus
Publisher: Springer Science & Business Media
ISBN: 3642741363
Category : Science
Languages : en
Pages : 1634
Book Description
This was the most recent in a highly esteemed series of biannual Rochester conferences. 20 invited reviews and about 200 invited contributions on all aspects of current research in high energy and particle physics give a complete and lively account of achievements, activities and goals in the field. Topics discussed include results from proton-antiproton and electron-positron colliders, spectroscopy and decays of heavy flavors, weak mixing and CP violation, non-accelerator particle physics, heavy ion collisions, future accelerators, detector developments, the standard electroweak model and beyond, the status of perturbative QCD, superstrings and unification, new developments in field theory, non-perturbative methods, and cosmology and astrophysics.
Publisher: Springer Science & Business Media
ISBN: 3642741363
Category : Science
Languages : en
Pages : 1634
Book Description
This was the most recent in a highly esteemed series of biannual Rochester conferences. 20 invited reviews and about 200 invited contributions on all aspects of current research in high energy and particle physics give a complete and lively account of achievements, activities and goals in the field. Topics discussed include results from proton-antiproton and electron-positron colliders, spectroscopy and decays of heavy flavors, weak mixing and CP violation, non-accelerator particle physics, heavy ion collisions, future accelerators, detector developments, the standard electroweak model and beyond, the status of perturbative QCD, superstrings and unification, new developments in field theory, non-perturbative methods, and cosmology and astrophysics.
Nuclear Science Abstracts
Author:
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 1166
Book Description
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 1166
Book Description
Energy Research Abstracts
Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 782
Book Description
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 782
Book Description
Phenomenology of Particle Physics
Author: André Rubbia
Publisher: Cambridge University Press
ISBN: 1009020935
Category : Science
Languages : en
Pages : 1112
Book Description
Written for a two-semester Master's or graduate course, this comprehensive treatise intertwines theory and experiment in an original approach that covers all aspects of modern particle physics. The author uses rigorous step-by-step derivations and provides more than 100 end-of-chapter problems for additional practice to ensure that students will not only understand the material but also be able to apply their knowledge. Featuring up-to-date experimental material, including the discovery of the Higgs boson at CERN and of neutrino oscillations, this monumental volume also serves as a one-stop reference for particle physics researchers of all levels and specialties. Richly illustrated with more than 450 figures, the text guides students through all the intricacies of quantum mechanics and quantum field theory in an intuitive manner that few books achieve.
Publisher: Cambridge University Press
ISBN: 1009020935
Category : Science
Languages : en
Pages : 1112
Book Description
Written for a two-semester Master's or graduate course, this comprehensive treatise intertwines theory and experiment in an original approach that covers all aspects of modern particle physics. The author uses rigorous step-by-step derivations and provides more than 100 end-of-chapter problems for additional practice to ensure that students will not only understand the material but also be able to apply their knowledge. Featuring up-to-date experimental material, including the discovery of the Higgs boson at CERN and of neutrino oscillations, this monumental volume also serves as a one-stop reference for particle physics researchers of all levels and specialties. Richly illustrated with more than 450 figures, the text guides students through all the intricacies of quantum mechanics and quantum field theory in an intuitive manner that few books achieve.
Quark Matter Formation and Heavy Ion Collisions
Author: Maurice Jacob
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 600
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 600
Book Description
ERDA Energy Research Abstracts
Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 972
Book Description
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 972
Book Description
Joint International Lepton-photon Symposium And Europhysics Conference On High Energy Physics - Lp-hep '91 (In 2 Volumes)
Author: Seamus Hegarty
Publisher: World Scientific
ISBN: 9814555533
Category :
Languages : en
Pages : 1432
Book Description
The proceedings of the Joint International Lepton-Photon Symposium and Europhysics Conference on High Energy Physics cover the full range of frontline research in high energy particle physics. The latest results, both theoretical and experimental, are presented and reviews of recent developments in instrumentation and accelerator techniques are included.Volume one summarises the highly specialised topics presented in the parallel sessions while the second volume contains the review talks given by the invited speakers.
Publisher: World Scientific
ISBN: 9814555533
Category :
Languages : en
Pages : 1432
Book Description
The proceedings of the Joint International Lepton-Photon Symposium and Europhysics Conference on High Energy Physics cover the full range of frontline research in high energy particle physics. The latest results, both theoretical and experimental, are presented and reviews of recent developments in instrumentation and accelerator techniques are included.Volume one summarises the highly specialised topics presented in the parallel sessions while the second volume contains the review talks given by the invited speakers.