Multivariate Statistical Modelling Based on Generalized Linear Models

Multivariate Statistical Modelling Based on Generalized Linear Models PDF Author: Ludwig Fahrmeir
Publisher: Springer Science & Business Media
ISBN: 1489900101
Category : Mathematics
Languages : en
Pages : 440

Get Book Here

Book Description
Concerned with the use of generalised linear models for univariate and multivariate regression analysis, this is a detailed introductory survey of the subject, based on the analysis of real data drawn from a variety of subjects such as the biological sciences, economics, and the social sciences. Where possible, technical details and proofs are deferred to an appendix in order to provide an accessible account for non-experts. Topics covered include: models for multi-categorical responses, model checking, time series and longitudinal data, random effects models, and state-space models. Throughout, the authors have taken great pains to discuss the underlying theoretical ideas in ways that relate well to the data at hand. As a result, numerous researchers whose work relies on the use of these models will find this an invaluable account.

Multivariate Statistical Modelling Based on Generalized Linear Models

Multivariate Statistical Modelling Based on Generalized Linear Models PDF Author: Ludwig Fahrmeir
Publisher: Springer Science & Business Media
ISBN: 1489900101
Category : Mathematics
Languages : en
Pages : 440

Get Book Here

Book Description
Concerned with the use of generalised linear models for univariate and multivariate regression analysis, this is a detailed introductory survey of the subject, based on the analysis of real data drawn from a variety of subjects such as the biological sciences, economics, and the social sciences. Where possible, technical details and proofs are deferred to an appendix in order to provide an accessible account for non-experts. Topics covered include: models for multi-categorical responses, model checking, time series and longitudinal data, random effects models, and state-space models. Throughout, the authors have taken great pains to discuss the underlying theoretical ideas in ways that relate well to the data at hand. As a result, numerous researchers whose work relies on the use of these models will find this an invaluable account.

Multivariate General Linear Models

Multivariate General Linear Models PDF Author: Richard F. Haase
Publisher: SAGE
ISBN: 1412972493
Category : Mathematics
Languages : en
Pages : 225

Get Book Here

Book Description
This title provides an integrated introduction to multivariate multiple regression analysis (MMR) and multivariate analysis of variance (MANOVA). It defines the key steps in analyzing linear model data and introduces multivariate linear model analysis as a generalization of the univariate model. Richard F. Haase focuses on multivariate measures of association for four common multivariate test statistics, presents a flexible method for testing hypotheses on models, and emphasizes the multivariate procedures attributable to Wilks, Pillai, Hotelling, and Roy.

Beyond Multiple Linear Regression

Beyond Multiple Linear Regression PDF Author: Paul Roback
Publisher: CRC Press
ISBN: 1439885400
Category : Mathematics
Languages : en
Pages : 436

Get Book Here

Book Description
Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R is designed for undergraduate students who have successfully completed a multiple linear regression course, helping them develop an expanded modeling toolkit that includes non-normal responses and correlated structure. Even though there is no mathematical prerequisite, the authors still introduce fairly sophisticated topics such as likelihood theory, zero-inflated Poisson, and parametric bootstrapping in an intuitive and applied manner. The case studies and exercises feature real data and real research questions; thus, most of the data in the textbook comes from collaborative research conducted by the authors and their students, or from student projects. Every chapter features a variety of conceptual exercises, guided exercises, and open-ended exercises using real data. After working through this material, students will develop an expanded toolkit and a greater appreciation for the wider world of data and statistical modeling. A solutions manual for all exercises is available to qualified instructors at the book’s website at www.routledge.com, and data sets and Rmd files for all case studies and exercises are available at the authors’ GitHub repo (https://github.com/proback/BeyondMLR)

Generalized Linear Models

Generalized Linear Models PDF Author: P. McCullagh
Publisher: Routledge
ISBN: 1351445847
Category : Mathematics
Languages : en
Pages : 536

Get Book Here

Book Description
The success of the first edition of Generalized Linear Models led to the updated Second Edition, which continues to provide a definitive unified, treatment of methods for the analysis of diverse types of data. Today, it remains popular for its clarity, richness of content and direct relevance to agricultural, biological, health, engineering, and ot

Log-Linear Models

Log-Linear Models PDF Author: Ronald Christensen
Publisher: Springer Science & Business Media
ISBN: 1475741111
Category : Mathematics
Languages : en
Pages : 420

Get Book Here

Book Description
This book examines log-linear models for contingency tables. Logistic re gression and logistic discrimination are treated as special cases and gener alized linear models (in the GLIM sense) are also discussed. The book is designed to fill a niche between basic introductory books such as Fienberg (1980) and Everitt (1977) and advanced books such as Bishop, Fienberg, and Holland (1975), Haberman (1974), and Santner and Duffy (1989). lt is primarily directed at advanced Masters degree students in Statistics but it can be used at both higher and lower levels. The primary theme of the book is using previous knowledge of analysis of variance and regression to motivate and explicate the use of log-linear models. Of course, both the analogies and the distinctions between the different methods must be kept in mind. The book is written at several levels. A basic introductory course would take material from Chapters I, II (deemphasizing Section II. 4), III, Sec tions IV. 1 through IV. 5 (eliminating the material on graphical models), Section IV. lü, Chapter VII, and Chapter IX. The advanced modeling ma terial at the end of Sections VII. 1, VII. 2, and possibly the material in Section IX. 2 should be deleted in a basic introductory course. For Mas ters degree students in Statistics, all the material in Chapters I through V, VII, IX, and X should be accessible. For an applied Ph. D.

Data Analysis Using Hierarchical Generalized Linear Models with R

Data Analysis Using Hierarchical Generalized Linear Models with R PDF Author: Youngjo Lee
Publisher: CRC Press
ISBN: 135181155X
Category : Mathematics
Languages : en
Pages : 242

Get Book Here

Book Description
Since their introduction, hierarchical generalized linear models (HGLMs) have proven useful in various fields by allowing random effects in regression models. Interest in the topic has grown, and various practical analytical tools have been developed. This book summarizes developments within the field and, using data examples, illustrates how to analyse various kinds of data using R. It provides a likelihood approach to advanced statistical modelling including generalized linear models with random effects, survival analysis and frailty models, multivariate HGLMs, factor and structural equation models, robust modelling of random effects, models including penalty and variable selection and hypothesis testing. This example-driven book is aimed primarily at researchers and graduate students, who wish to perform data modelling beyond the frequentist framework, and especially for those searching for a bridge between Bayesian and frequentist statistics.

Linear Models in Statistics

Linear Models in Statistics PDF Author: Alvin C. Rencher
Publisher: John Wiley & Sons
ISBN: 0470192607
Category : Mathematics
Languages : en
Pages : 690

Get Book Here

Book Description
The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.

Multivariate Generalized Linear Mixed Models Using R

Multivariate Generalized Linear Mixed Models Using R PDF Author: Damon Mark Berridge
Publisher: CRC Press
ISBN: 1439813272
Category : Mathematics
Languages : en
Pages : 284

Get Book Here

Book Description
Multivariate Generalized Linear Mixed Models Using R presents robust and methodologically sound models for analyzing large and complex data sets, enabling readers to answer increasingly complex research questions. The book applies the principles of modeling to longitudinal data from panel and related studies via the Sabre software package in R.A Un

Nonparametric Regression and Generalized Linear Models

Nonparametric Regression and Generalized Linear Models PDF Author: P.J. Green
Publisher: CRC Press
ISBN: 1482229757
Category : Mathematics
Languages : en
Pages : 197

Get Book Here

Book Description
Nonparametric Regression and Generalized Linear Models focuses on the roughness penalty method of nonparametric smoothing and shows how this technique provides a unifying approach to a wide range of smoothing problems. The emphasis is methodological rather than theoretical, and the authors concentrate on statistical and computation issues. Real data examples are used to illustrate the various methods and to compare them with standard parametric approaches. The mathematical treatment is self-contained and depends mainly on simple linear algebra and calculus. This monograph will be useful both as a reference work for research and applied statisticians and as a text for graduate students.

An Introduction to Generalized Linear Models

An Introduction to Generalized Linear Models PDF Author: George H. Dunteman
Publisher: SAGE
ISBN: 9780761920847
Category : Mathematics
Languages : en
Pages : 92

Get Book Here

Book Description
Providing a thorough introduction to generalized linear models (GLM), exponential family distribution & maximum likelihood estimation, this book includes discussion on checking model adequacy & description on how to use a popular statistical software programme, SAS, to fit GLM.