Multivariate Statistical Machine Learning Methods for Genomic Prediction

Multivariate Statistical Machine Learning Methods for Genomic Prediction PDF Author: Osval Antonio Montesinos López
Publisher: Springer Nature
ISBN: 3030890104
Category : Technology & Engineering
Languages : en
Pages : 707

Get Book Here

Book Description
This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension.The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.

Multivariate Statistical Machine Learning Methods for Genomic Prediction

Multivariate Statistical Machine Learning Methods for Genomic Prediction PDF Author: Osval Antonio Montesinos López
Publisher: Springer Nature
ISBN: 3030890104
Category : Technology & Engineering
Languages : en
Pages : 707

Get Book Here

Book Description
This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension.The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.

Modern Multivariate Statistical Techniques

Modern Multivariate Statistical Techniques PDF Author: Alan J. Izenman
Publisher: Springer Science & Business Media
ISBN: 0387781897
Category : Mathematics
Languages : en
Pages : 757

Get Book Here

Book Description
This is the first book on multivariate analysis to look at large data sets which describes the state of the art in analyzing such data. Material such as database management systems is included that has never appeared in statistics books before.

The Elements of Statistical Learning

The Elements of Statistical Learning PDF Author: Trevor Hastie
Publisher: Springer Science & Business Media
ISBN: 0387216065
Category : Mathematics
Languages : en
Pages : 545

Get Book Here

Book Description
During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.

Artificial Intelligence and Society 5.0

Artificial Intelligence and Society 5.0 PDF Author: Vikas Khullar
Publisher: CRC Press
ISBN: 1003825591
Category : Computers
Languages : en
Pages : 294

Get Book Here

Book Description
The artificial intelligence-based framework, algorithms, and applications presented in this book take the perspective of Society 5.0 – a social order supported by innovation in data, information, and knowledge. It showcases current case studies of Society 5.0 in diverse areas such as healthcare, smart cities, and infrastructure. Key Features: Elaborates on the use of big data, cyber-physical systems, robotics, augmented-virtual reality, and cybersecurity as pillars for Society 5.0. Showcases the use of artificial intelligence, architecture, frameworks, and distributed and federated learning structures in Society 5.0. Discusses speech recognition, image classification, robotic process automation, natural language generation, and decision support automation. Elucidates the application of machine learning, deep learning, fuzzy-based systems, and natural language processing. Includes case studies on the application of Society 5.0 aspects in educational, medical, infrastructure, and smart cities. The book is intendended especially for graduate and postgraduate students, and academic researchers in the fields of computer science and engineering, electrical engineering, and information technology.

Understanding Machine Learning

Understanding Machine Learning PDF Author: Shai Shalev-Shwartz
Publisher: Cambridge University Press
ISBN: 1107057132
Category : Computers
Languages : en
Pages : 415

Get Book Here

Book Description
Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Current advances in genomics and gene editing tools for crop improvement in a changing climate scenario

Current advances in genomics and gene editing tools for crop improvement in a changing climate scenario PDF Author: Vijay Rani Rajpal
Publisher: Frontiers Media SA
ISBN: 2832528112
Category : Science
Languages : en
Pages : 312

Get Book Here

Book Description


Methodologies, Frameworks, and Applications of Machine Learning

Methodologies, Frameworks, and Applications of Machine Learning PDF Author: Srivastava, Pramod Kumar
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 315

Get Book Here

Book Description
Technology is constantly evolving, and machine learning is positioned to become a pivotal tool with the power to transform industries and revolutionize everyday life. This book underscores the urgency of leveraging the latest machine learning methodologies and theoretical advancements, all while harnessing a wealth of realistic data and affordable computational resources. Machine learning is no longer confined to theoretical domains; it is now a vital component in healthcare, manufacturing, education, finance, law enforcement, and marketing, ushering in an era of data-driven decision-making. Academic scholars seeking to unlock the potential of machine learning in the context of Industry 5.0 and advanced IoT applications will find that the groundbreaking book, Methodologies, Frameworks, and Applications of Machine Learning, introduces an unmissable opportunity to delve into the forefront of modern research and application. This book offers a wealth of knowledge and practical insights across a wide array of topics, ranging from conceptual frameworks and methodological approaches to the application of probability theory, statistical techniques, and machine learning in domains as diverse as e-government, healthcare, cyber-physical systems, and sustainable development, this comprehensive guide equips you with the tools to navigate the complexities of Industry 5.0 and the Internet of Things (IoT).

Ethics, Machine Learning, and Python in Geospatial Analysis

Ethics, Machine Learning, and Python in Geospatial Analysis PDF Author: Galety, Mohammad Gouse
Publisher: IGI Global
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 359

Get Book Here

Book Description
In geospatial analysis, navigating the complexities of data interpretation and analysis presents a formidable challenge. Traditional methods often need to efficiently handle vast volumes of geospatial data while providing insightful and actionable results. Scholars and practitioners grapple with manual or rule-based approaches, hindering progress in understanding and addressing pressing issues such as climate change, urbanization, and resource management. Ethics, Machine Learning, and Python in Geospatial Analysis offers a solution to the challenges faced by leveraging the extensive library support and user-friendly interface of Python and machine learning. The book’s meticulously crafted chapters guide readers through the intricacies of Python programming and its application in geospatial analysis, from fundamental concepts to advanced techniques.

Raman Spectroscopy in the Food Industry

Raman Spectroscopy in the Food Industry PDF Author: Ugur Tamer
Publisher: CRC Press
ISBN: 1040147828
Category : Technology & Engineering
Languages : en
Pages : 252

Get Book Here

Book Description
Raman spectroscopy has become one of the most important techniques effectively applied to detect specific analytes and microorganisms in food samples. Raman Spectroscopy in the Food Industry provides a comprehensive overview of the current state of the art and future prospects of Raman spectroscopy in food analyses. Through in-depth chapters, the authors discuss the fundamental principles of Raman spectroscopy, its instrumentation, methodologies, and its diverse applications across various food matrices. Real-world case studies and practical examples underscore the transformative potential of Raman spectroscopy in reshaping our understanding, analysis, and innovation within the realm of food science. Featured topics included are as follows: Raman spectroscopy applications in food science and technology The unique property of Raman phenomena, along with the variations in signal modes The different food safety topics, such as toxins, biosafety, foodborne bacteria, and fermentation Machine-learning studies on Raman spectrosopy in food science As the editors, we are committed to providing a valuable resource that inspires further exploration and collaboration in harnessing the power of Raman spectroscopy for the advancement of food analyses. We sincerely hope that this book serves as a catalyst for pushing the boundaries of knowledge and driving innovation in this exciting field.

Women's Contribution to F-element Science Part 2

Women's Contribution to F-element Science Part 2 PDF Author:
Publisher: Elsevier
ISBN: 0443313032
Category : Science
Languages : en
Pages : 324

Get Book Here

Book Description
Women's Contribution to F-element Science, Part Two, Volume 66 highlights women researchers, recognizing and showcasing their unique contributions to the field. Topics include nanophosphors for near Infrared imaging and energy conversion, luminescent and upconversion nanomaterials, molecular luminescence, radiopharmaceuticals, and more. Chapters in this new release include Luminescent solar concentrators: current and future applications in smart cities, Lanthanide-Based Responsive MRI Probes, Helicate coordination complexes of rare earths and their luminescent properties, Environmental and molecular facets of uranyl(V) and uranium(V) chemistry, Versatile core/shell luminescent nanoparticles for biophotonic studies, 4f-Metal ions in single molecule magnet systems. - Provides updates on women researchers in rare earth physics and chemistry - Includes content surrounding nanomaterials for optical and optoelectronic applications - Covers new materials for energy conversion - Discusses radiopharmaceuticals