Introduction to Multivariate Analysis

Introduction to Multivariate Analysis PDF Author: Sadanori Konishi
Publisher: CRC Press
ISBN: 1466567287
Category : Mathematics
Languages : en
Pages : 340

Get Book Here

Book Description
Select the Optimal Model for Interpreting Multivariate Data Introduction to Multivariate Analysis: Linear and Nonlinear Modeling shows how multivariate analysis is widely used for extracting useful information and patterns from multivariate data and for understanding the structure of random phenomena. Along with the basic concepts of various procedures in traditional multivariate analysis, the book covers nonlinear techniques for clarifying phenomena behind observed multivariate data. It primarily focuses on regression modeling, classification and discrimination, dimension reduction, and clustering. The text thoroughly explains the concepts and derivations of the AIC, BIC, and related criteria and includes a wide range of practical examples of model selection and evaluation criteria. To estimate and evaluate models with a large number of predictor variables, the author presents regularization methods, including the L1 norm regularization that gives simultaneous model estimation and variable selection. For advanced undergraduate and graduate students in statistical science, this text provides a systematic description of both traditional and newer techniques in multivariate analysis and machine learning. It also introduces linear and nonlinear statistical modeling for researchers and practitioners in industrial and systems engineering, information science, life science, and other areas.

Introduction to Multivariate Analysis

Introduction to Multivariate Analysis PDF Author: Sadanori Konishi
Publisher: CRC Press
ISBN: 1466567287
Category : Mathematics
Languages : en
Pages : 340

Get Book Here

Book Description
Select the Optimal Model for Interpreting Multivariate Data Introduction to Multivariate Analysis: Linear and Nonlinear Modeling shows how multivariate analysis is widely used for extracting useful information and patterns from multivariate data and for understanding the structure of random phenomena. Along with the basic concepts of various procedures in traditional multivariate analysis, the book covers nonlinear techniques for clarifying phenomena behind observed multivariate data. It primarily focuses on regression modeling, classification and discrimination, dimension reduction, and clustering. The text thoroughly explains the concepts and derivations of the AIC, BIC, and related criteria and includes a wide range of practical examples of model selection and evaluation criteria. To estimate and evaluate models with a large number of predictor variables, the author presents regularization methods, including the L1 norm regularization that gives simultaneous model estimation and variable selection. For advanced undergraduate and graduate students in statistical science, this text provides a systematic description of both traditional and newer techniques in multivariate analysis and machine learning. It also introduces linear and nonlinear statistical modeling for researchers and practitioners in industrial and systems engineering, information science, life science, and other areas.

Nonlinear Multivariate Analysis

Nonlinear Multivariate Analysis PDF Author:
Publisher:
ISBN: 9788126545117
Category : Nonlinear analysis
Languages : en
Pages : 579

Get Book Here

Book Description


Nonlinear Models for Repeated Measurement Data

Nonlinear Models for Repeated Measurement Data PDF Author: Marie Davidian
Publisher: Routledge
ISBN: 1351428152
Category : Mathematics
Languages : en
Pages : 360

Get Book Here

Book Description
Nonlinear measurement data arise in a wide variety of biological and biomedical applications, such as longitudinal clinical trials, studies of drug kinetics and growth, and the analysis of assay and laboratory data. Nonlinear Models for Repeated Measurement Data provides the first unified development of methods and models for data of this type, with a detailed treatment of inference for the nonlinear mixed effects and its extensions. A particular strength of the book is the inclusion of several detailed case studies from the areas of population pharmacokinetics and pharmacodynamics, immunoassay and bioassay development and the analysis of growth curves.

Nonlinear Statistical Models

Nonlinear Statistical Models PDF Author: A. Ronald Gallant
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 632

Get Book Here

Book Description
Univariate nonlinear regression; Univariate nonlinear regression: special situations; A unified asymptotic theory of nonlinear models with regression structure; Univariate nonlinear regression: asymptotic theory; Multivariate nonlinear regression; Nonlinear simultaneus equations models; A unified asymptotic theory for dynamic nonlinear models.

Fitting Models to Biological Data Using Linear and Nonlinear Regression

Fitting Models to Biological Data Using Linear and Nonlinear Regression PDF Author: Harvey Motulsky
Publisher: Oxford University Press
ISBN: 9780198038344
Category : Mathematics
Languages : en
Pages : 352

Get Book Here

Book Description
Most biologists use nonlinear regression more than any other statistical technique, but there are very few places to learn about curve-fitting. This book, by the author of the very successful Intuitive Biostatistics, addresses this relatively focused need of an extraordinarily broad range of scientists.

Nonlinear Regression

Nonlinear Regression PDF Author: George A. F. Seber
Publisher: John Wiley & Sons
ISBN: 0471725307
Category : Mathematics
Languages : en
Pages : 800

Get Book Here

Book Description
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. From the Reviews of Nonlinear Regression "A very good book and an important one in that it is likely to become a standard reference for all interested in nonlinear regression; and I would imagine that any statistician concerned with nonlinear regression would want a copy on his shelves." –The Statistician "Nonlinear Regression also includes a reference list of over 700 entries. The compilation of this material and cross-referencing of it is one of the most valuable aspects of the book. Nonlinear Regression can provide the researcher unfamiliar with a particular specialty area of nonlinear regression an introduction to that area of nonlinear regression and access to the appropriate references . . . Nonlinear Regression provides by far the broadest discussion of nonlinear regression models currently available and will be a valuable addition to the library of anyone interested in understanding and using such models including the statistical researcher." –Mathematical Reviews

Applied Multivariate Statistical Analysis and Related Topics with R

Applied Multivariate Statistical Analysis and Related Topics with R PDF Author: Lang WU
Publisher: EDP Sciences
ISBN: 2759826023
Category : Mathematics
Languages : en
Pages : 238

Get Book Here

Book Description
Multivariate analysis is a popular area in statistics and data science. This book provides a good balance between conceptual understanding, key theoretical presentation, and detailed implementation with software R for commonly used multivariate analysis models and methods in practice.

Nonlinear Regression with R

Nonlinear Regression with R PDF Author: Christian Ritz
Publisher: Springer Science & Business Media
ISBN: 0387096167
Category : Mathematics
Languages : en
Pages : 151

Get Book Here

Book Description
- Coherent and unified treatment of nonlinear regression with R. - Example-based approach. - Wide area of application.

Modern Multivariate Statistical Techniques

Modern Multivariate Statistical Techniques PDF Author: Alan J. Izenman
Publisher: Springer Science & Business Media
ISBN: 0387781897
Category : Mathematics
Languages : en
Pages : 757

Get Book Here

Book Description
This is the first book on multivariate analysis to look at large data sets which describes the state of the art in analyzing such data. Material such as database management systems is included that has never appeared in statistics books before.

Regression Analysis and Linear Models

Regression Analysis and Linear Models PDF Author: Richard B. Darlington
Publisher: Guilford Publications
ISBN: 1462527981
Category : Social Science
Languages : en
Pages : 689

Get Book Here

Book Description
Emphasizing conceptual understanding over mathematics, this user-friendly text introduces linear regression analysis to students and researchers across the social, behavioral, consumer, and health sciences. Coverage includes model construction and estimation, quantification and measurement of multivariate and partial associations, statistical control, group comparisons, moderation analysis, mediation and path analysis, and regression diagnostics, among other important topics. Engaging worked-through examples demonstrate each technique, accompanied by helpful advice and cautions. The use of SPSS, SAS, and STATA is emphasized, with an appendix on regression analysis using R. The companion website (www.afhayes.com) provides datasets for the book's examples as well as the RLM macro for SPSS and SAS. Pedagogical Features: *Chapters include SPSS, SAS, or STATA code pertinent to the analyses described, with each distinctively formatted for easy identification. *An appendix documents the RLM macro, which facilitates computations for estimating and probing interactions, dominance analysis, heteroscedasticity-consistent standard errors, and linear spline regression, among other analyses. *Students are guided to practice what they learn in each chapter using datasets provided online. *Addresses topics not usually covered, such as ways to measure a variable’s importance, coding systems for representing categorical variables, causation, and myths about testing interaction.