Multivariable Feedback Design

Multivariable Feedback Design PDF Author: Jan Marian Maciejowski
Publisher: Addison-Wesley Longman
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 452

Get Book Here

Book Description
Provides a view of modern multivariate feedback theory and design. Balancing techniques with theory, the objective throughout is to enable the feedback engineer to design real systems.

Multivariable Feedback Design

Multivariable Feedback Design PDF Author: Jan Marian Maciejowski
Publisher: Addison-Wesley Longman
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 452

Get Book Here

Book Description
Provides a view of modern multivariate feedback theory and design. Balancing techniques with theory, the objective throughout is to enable the feedback engineer to design real systems.

Multivariable Feedback Control

Multivariable Feedback Control PDF Author: Sigurd Skogestad
Publisher: John Wiley & Sons
ISBN: 047001167X
Category : Science
Languages : en
Pages : 594

Get Book Here

Book Description
Multivariable Feedback Control: Analysis and Design, Second Edition presents a rigorous, yet easily readable, introduction to the analysis and design of robust multivariable control systems. Focusing on practical feedback control and not on system theory in general, this book provides the reader with insights into the opportunities and limitations of feedback control. Taking into account the latest developments in the field, this fully revised and updated second edition: * features a new chapter devoted to the use of linear matrix inequalities (LMIs); * presents current results on fundamental performance limitations introduced by RHP-poles and RHP-zeros; * introduces updated material on the selection of controlled variables and self-optimizing control; * provides simple IMC tuning rules for PID control; * covers additional material including unstable plants, the feedback amplifier, the lower gain margin and a clear strategy for incorporating integral action into LQG control; * includes numerous worked examples, exercises and case studies, which make frequent use of Matlab and the new Robust Control toolbox. Multivariable Feedback Control: Analysis and Design, Second Edition is an excellent resource for advanced undergraduate and graduate courses studying multivariable control. It is also an invaluable tool for engineers who want to understand multivariable control, its limitations, and how it can be applied in practice. The analysis techniques and the material on control structure design should prove very useful in the new emerging area of systems biology. Reviews of the first edition: "Being rich in insights and practical tips on controller design, the book should also prove to be very beneficial to industrial control engineers, both as a reference book and as an educational tool." Applied Mechanics Reviews "In summary, this book can be strongly recommended not only as a basic text in multivariable control techniques for graduate and undergraduate students, but also as a valuable source of information for control engineers." International Journal of Adaptive Control and Signal Processing

Lectures in Feedback Design for Multivariable Systems

Lectures in Feedback Design for Multivariable Systems PDF Author: Alberto Isidori
Publisher: Springer
ISBN: 3319420313
Category : Technology & Engineering
Languages : en
Pages : 414

Get Book Here

Book Description
This book focuses on methods that relate, in one form or another, to the “small-gain theorem”. It is aimed at readers who are interested in learning methods for the design of feedback laws for linear and nonlinear multivariable systems in the presence of model uncertainties. With worked examples throughout, it includes both introductory material and more advanced topics. Divided into two parts, the first covers relevant aspects of linear-systems theory, the second, nonlinear theory. In order to deepen readers’ understanding, simpler single-input–single-output systems generally precede treatment of more complex multi-input–multi-output (MIMO) systems and linear systems precede nonlinear systems. This approach is used throughout, including in the final chapters, which explain the latest advanced ideas governing the stabilization, regulation, and tracking of nonlinear MIMO systems. Two major design problems are considered, both in the presence of model uncertainties: asymptotic stabilization with a “guaranteed region of attraction” of a given equilibrium point and asymptotic rejection of the effect of exogenous (disturbance) inputs on selected regulated outputs. Much of the introductory instructional material in this book has been developed for teaching students, while the final coverage of nonlinear MIMO systems offers readers a first coordinated treatment of completely novel results. The worked examples presented provide the instructor with ready-to-use material to help students to understand the mathematical theory. Readers should be familiar with the fundamentals of linear-systems and control theory. This book is a valuable resource for students following postgraduate programs in systems and control, as well as engineers working on the control of robotic, mechatronic and power systems.

Linear and Nonlinear Multivariable Feedback Control

Linear and Nonlinear Multivariable Feedback Control PDF Author: Oleg Gasparyan
Publisher: John Wiley & Sons
ISBN: 0470061049
Category : Science
Languages : en
Pages : 355

Get Book Here

Book Description
Automatic feedback control systems play crucial roles in many fields, including manufacturing industries, communications, naval and space systems. At its simplest, a control system represents a feedback loop in which the difference between the ideal (input) and actual (output) signals is used to modify the behaviour of the system. Control systems are in our homes, computers, cars and toys. Basic control principles can also be found in areas such as medicine, biology and economics, where feedback mechanisms are ever present. Linear and Nonlinear Multivariable Feedback Control presents a highly original, unified control theory of both linear and nonlinear multivariable (also known as multi-input multi-output (MIMO)) feedback systems as a straightforward extension of classical control theory. It shows how the classical engineering methods look in the multidimensional case and how practising engineers or researchers can apply them to the analysis and design of linear and nonlinear MIMO systems. This comprehensive book: uses a fresh approach, bridging the gap between classical and modern, linear and nonlinear multivariable control theories; includes vital nonlinear topics such as limit cycle prediction and forced oscillations analysis on the basis of the describing function method and absolute stability analysis by means of the primary classical frequency-domain criteria (e.g. Popov, circle or parabolic criteria); reinforces the main themes with practical worked examples solved by a special MATLAB-based graphical user interface, as well as with problems, questions and exercises on an accompanying website. The approaches presented in Linear and Nonlinear Multivariable Feedback Control form an invaluable resource for graduate and undergraduate students studying multivariable feedback control as well as those studying classical or modern control theories. The book also provides a useful reference for researchers, experts and practitioners working in industry

Mono- and Multivariable Control and Estimation

Mono- and Multivariable Control and Estimation PDF Author: Eric Ostertag
Publisher: Springer Science & Business Media
ISBN: 3642137342
Category : Technology & Engineering
Languages : en
Pages : 359

Get Book Here

Book Description
This book presents the various design methods of a state-feedback control law and of an observer. The considered systems are of continuous-time and of discrete-time nature, monovariable or multivariable, the last ones being of main consideration. Three different approaches are described: • Linear design methods, with an emphasis on decoupling strategies, and a general formula for multivariable controller or observer design; • Quadratic optimization methods: Linear Quadratic Control (LQC), optimal Kalman filtering, Linear Quadratic Gaussian (LQG) control; • Linear matrix inequalities (LMIs) to solve linear and quadratic problems. The duality between control and observation is taken to advantage and extended up to the mathematical domain. A large number of exercises, all given with their detailed solutions, mostly obtained with MATLAB, reinforce and exemplify the practical orientation of this book. The programs, created by the author for their solving, are available on the Internet sites of Springer and of MathWorks for downloading. This book is targeted at students of Engineering Schools or Universities, at the Master’s level, at engineers desiring to design and implement innovative control methods, and at researchers.

Feedback Control Theory

Feedback Control Theory PDF Author: John C. Doyle
Publisher: Courier Corporation
ISBN: 0486318338
Category : Technology & Engineering
Languages : en
Pages : 264

Get Book Here

Book Description
An excellent introduction to feedback control system design, this book offers a theoretical approach that captures the essential issues and can be applied to a wide range of practical problems. Its explorations of recent developments in the field emphasize the relationship of new procedures to classical control theory, with a focus on single input and output systems that keeps concepts accessible to students with limited backgrounds. The text is geared toward a single-semester senior course or a graduate-level class for students of electrical engineering. The opening chapters constitute a basic treatment of feedback design. Topics include a detailed formulation of the control design program, the fundamental issue of performance/stability robustness tradeoff, and the graphical design technique of loopshaping. Subsequent chapters extend the discussion of the loopshaping technique and connect it with notions of optimality. Concluding chapters examine controller design via optimization, offering a mathematical approach that is useful for multivariable systems.

Linear Feedback Control

Linear Feedback Control PDF Author: Dingyu Xue
Publisher: SIAM
ISBN: 9780898718621
Category : Mathematics
Languages : en
Pages : 366

Get Book Here

Book Description
This book discusses analysis and design techniques for linear feedback control systems using MATLAB® software. By reducing the mathematics, increasing MATLAB working examples, and inserting short scripts and plots within the text, the authors have created a resource suitable for almost any type of user. The book begins with a summary of the properties of linear systems and addresses modeling and model reduction issues. In the subsequent chapters on analysis, the authors introduce time domain, complex plane, and frequency domain techniques. Their coverage of design includes discussions on model-based controller designs, PID controllers, and robust control designs. A unique aspect of the book is its inclusion of a chapter on fractional-order controllers, which are useful in control engineering practice.

Multivariable Control Systems

Multivariable Control Systems PDF Author: P. Albertos Pérez
Publisher: Springer Science & Business Media
ISBN: 1852337389
Category : Language Arts & Disciplines
Languages : en
Pages : 357

Get Book Here

Book Description
Multivariable Control Systems focuses on control design with continual references to the practical aspects of implementation. While the concepts of multivariable control are justified, the book emphasises the need to maintain student interest and motivation over exhaustive mathematical proof. Tools of analysis and representation are always developed as methods for achieving a final control system design and evaluation. Features: • design implementation laid out using extensive reference to MATLAB®; • combined consideration of systems (plant) and signals (mainly disturbances); • step-by-step approach from the objectives of multivariable control to the solution of complete design problems. Multivariable Control Systems is an ideal text for graduate students or for final-year undergraduates looking for more depth than provided by introductory textbooks. It will also interest the control engineer practising in industry and seeking to implement robust or multivariable control solutions to plant problems.

Multivariable Feedback Systems

Multivariable Feedback Systems PDF Author: Frank M. Callier
Publisher: Springer Verlag
ISBN: 9780387907680
Category : Mathematics
Languages : en
Pages : 275

Get Book Here

Book Description


Design of Linear Multivariable Feedback Control Systems

Design of Linear Multivariable Feedback Control Systems PDF Author: Joseph J. Bongiorno Jr.
Publisher: Springer Nature
ISBN: 3030443566
Category : Technology & Engineering
Languages : en
Pages : 459

Get Book Here

Book Description
This book contains a derivation of the subset of stabilizing controllers for analog and digital linear time-invariant multivariable feedback control systems that insure stable system errors and stable controller outputs for persistent deterministic reference inputs that are trackable and for persistent deterministic disturbance inputs that are rejectable. For this subset of stabilizing controllers, the Wiener-Hopf methodology is then employed to obtain the optimal controller for which a quadratic performance measure is minimized. This is done for the completely general standard configuration and methods that enable the trading off of optimality for an improved stability margin and/or reduced sensitivity to plant model uncertainty are described. New and novel results on the optimal design of decoupled (non-interacting) systems are also presented. The results are applied in two examples: the one- and three-degree-of-freedom configurations. These demonstrate that the standard configuration is one encompassing all possible feedback configurations. Each chapter is completed by a group of worked examples, which reveal additional insights and extensions of the theory presented in the chapter. Three of the examples illustrate the application of the theory to two physical cases: the depth and pitch control of a submarine and the control of a Rosenbrock process. In the latter case, designs with and without decoupling are compared. This book provides researchers and graduate students working in feedback control with a valuable reference for Wiener–Hopf theory of multivariable design. Basic knowledge of linear systems and matrix theory is required.