Multivariable Calculus with Applications

Multivariable Calculus with Applications PDF Author: Peter D. Lax
Publisher: Springer
ISBN: 3319740733
Category : Mathematics
Languages : en
Pages : 488

Get Book Here

Book Description
This text in multivariable calculus fosters comprehension through meaningful explanations. Written with students in mathematics, the physical sciences, and engineering in mind, it extends concepts from single variable calculus such as derivative, integral, and important theorems to partial derivatives, multiple integrals, Stokes’ and divergence theorems. Students with a background in single variable calculus are guided through a variety of problem solving techniques and practice problems. Examples from the physical sciences are utilized to highlight the essential relationship between calculus and modern science. The symbiotic relationship between science and mathematics is shown by deriving and discussing several conservation laws, and vector calculus is utilized to describe a number of physical theories via partial differential equations. Students will learn that mathematics is the language that enables scientific ideas to be precisely formulated and that science is a source for the development of mathematics.

Multivariable Calculus with Applications

Multivariable Calculus with Applications PDF Author: Peter D. Lax
Publisher: Springer
ISBN: 3319740733
Category : Mathematics
Languages : en
Pages : 488

Get Book Here

Book Description
This text in multivariable calculus fosters comprehension through meaningful explanations. Written with students in mathematics, the physical sciences, and engineering in mind, it extends concepts from single variable calculus such as derivative, integral, and important theorems to partial derivatives, multiple integrals, Stokes’ and divergence theorems. Students with a background in single variable calculus are guided through a variety of problem solving techniques and practice problems. Examples from the physical sciences are utilized to highlight the essential relationship between calculus and modern science. The symbiotic relationship between science and mathematics is shown by deriving and discussing several conservation laws, and vector calculus is utilized to describe a number of physical theories via partial differential equations. Students will learn that mathematics is the language that enables scientific ideas to be precisely formulated and that science is a source for the development of mathematics.

Calculus With Applications

Calculus With Applications PDF Author: Peter D. Lax
Publisher: Springer Science & Business Media
ISBN: 1461479460
Category : Mathematics
Languages : en
Pages : 509

Get Book Here

Book Description
Burstein, and Lax's Calculus with Applications and Computing offers meaningful explanations of the important theorems of single variable calculus. Written with students in mathematics, the physical sciences, and engineering in mind, and revised with their help, it shows that the themes of calculation, approximation, and modeling are central to mathematics and the main ideas of single variable calculus. This edition brings the innovation of the first edition to a new generation of students. New sections in this book use simple, elementary examples to show that when applying calculus concepts to approximations of functions, uniform convergence is more natural and easier to use than point-wise convergence. As in the original, this edition includes material that is essential for students in science and engineering, including an elementary introduction to complex numbers and complex-valued functions, applications of calculus to modeling vibrations and population dynamics, and an introduction to probability and information theory.

Multivariable Calculus and Mathematica®

Multivariable Calculus and Mathematica® PDF Author: Kevin R. Coombes
Publisher: Springer Science & Business Media
ISBN: 1461216982
Category : Mathematics
Languages : en
Pages : 282

Get Book Here

Book Description
Aiming to "modernise" the course through the integration of Mathematica, this publication introduces students to its multivariable uses, instructs them on its use as a tool in simplifying calculations, and presents introductions to geometry, mathematical physics, and kinematics. The authors make it clear that Mathematica is not algorithms, but at the same time, they clearly see the ways in which Mathematica can make things cleaner, clearer and simpler. The sets of problems give students an opportunity to practice their newly learned skills, covering simple calculations, simple plots, a review of one-variable calculus using Mathematica for symbolic differentiation, integration and numerical integration, and also cover the practice of incorporating text and headings into a Mathematica notebook. The accompanying diskette contains both Mathematica 2.2 and 3.0 version notebooks, as well as sample examination problems for students, which can be used with any standard multivariable calculus textbook. It is assumed that students will also have access to an introductory primer for Mathematica.

Multivariable Calculus with MATLAB®

Multivariable Calculus with MATLAB® PDF Author: Ronald L. Lipsman
Publisher: Springer
ISBN: 331965070X
Category : Mathematics
Languages : en
Pages : 280

Get Book Here

Book Description
This comprehensive treatment of multivariable calculus focuses on the numerous tools that MATLAB® brings to the subject, as it presents introductions to geometry, mathematical physics, and kinematics. Covering simple calculations with MATLAB®, relevant plots, integration, and optimization, the numerous problem sets encourage practice with newly learned skills that cultivate the reader’s understanding of the material. Significant examples illustrate each topic, and fundamental physical applications such as Kepler’s Law, electromagnetism, fluid flow, and energy estimation are brought to prominent position. Perfect for use as a supplement to any standard multivariable calculus text, a “mathematical methods in physics or engineering” class, for independent study, or even as the class text in an “honors” multivariable calculus course, this textbook will appeal to mathematics, engineering, and physical science students. MATLAB® is tightly integrated into every portion of this book, and its graphical capabilities are used to present vibrant pictures of curves and surfaces. Readers benefit from the deep connections made between mathematics and science while learning more about the intrinsic geometry of curves and surfaces. With serious yet elementary explanation of various numerical algorithms, this textbook enlivens the teaching of multivariable calculus and mathematical methods courses for scientists and engineers.

Multivariable Calculus with Engineering and Science Applications

Multivariable Calculus with Engineering and Science Applications PDF Author: Philip M. Anselone
Publisher:
ISBN: 9780130452795
Category : Mathematics
Languages : en
Pages : 577

Get Book Here

Book Description
Aimed at students seeking a career in science, engineering or mathematics, this text on multivariable calculus emphasizes that calculus is best understood via geometry and interdisciplinary applications. The book includes problem sets and chapter projects that offer a substantial source of applied problems. Also included are chapter-end do-it-yourself projects on topics in science, engineering and probability. Short examples of MATLAB code are featured occasionally.

Advanced Calculus

Advanced Calculus PDF Author: James J. Callahan
Publisher: Springer Science & Business Media
ISBN: 144197332X
Category : Mathematics
Languages : en
Pages : 542

Get Book Here

Book Description
With a fresh geometric approach that incorporates more than 250 illustrations, this textbook sets itself apart from all others in advanced calculus. Besides the classical capstones--the change of variables formula, implicit and inverse function theorems, the integral theorems of Gauss and Stokes--the text treats other important topics in differential analysis, such as Morse's lemma and the Poincaré lemma. The ideas behind most topics can be understood with just two or three variables. The book incorporates modern computational tools to give visualization real power. Using 2D and 3D graphics, the book offers new insights into fundamental elements of the calculus of differentiable maps. The geometric theme continues with an analysis of the physical meaning of the divergence and the curl at a level of detail not found in other advanced calculus books. This is a textbook for undergraduates and graduate students in mathematics, the physical sciences, and economics. Prerequisites are an introduction to linear algebra and multivariable calculus. There is enough material for a year-long course on advanced calculus and for a variety of semester courses--including topics in geometry. The measured pace of the book, with its extensive examples and illustrations, make it especially suitable for independent study.

Multivariable Calculus

Multivariable Calculus PDF Author: David Damiano
Publisher: Jones & Bartlett Publishers
ISBN: 0763782475
Category : Mathematics
Languages : en
Pages : 560

Get Book Here

Book Description
Written for mathematics, science, and engineering majors who have completed the traditional two-term course in single variable calculus, Multivariable Calculus bridges the gap between mathematical concepts and their real-world applications outside of mathematics. The ideas of multivariable calculus are presented in a context that is informed by their non-mathematical applications. It incorporates collaborative learning strategies and the sophisticated use of technology, which asks students to become active participants in the development of their own understanding of mathematical ideas. This teaching and learning strategy urges students to communicate mathematically, both orally and in writing. With extended examples and exercises and a student-friendly accessible writing style, Multivariable Calculus is an exciting and engaging journey into mathematics relevant to students everyday lives.

Two and Three Dimensional Calculus

Two and Three Dimensional Calculus PDF Author: Phil Dyke
Publisher: John Wiley & Sons
ISBN: 1119221781
Category : Mathematics
Languages : en
Pages : 394

Get Book Here

Book Description
Covers multivariable calculus, starting from the basics and leading up to the three theorems of Green, Gauss, and Stokes, but always with an eye on practical applications. Written for a wide spectrum of undergraduate students by an experienced author, this book provides a very practical approach to advanced calculus—starting from the basics and leading up to the theorems of Green, Gauss, and Stokes. It explains, clearly and concisely, partial differentiation, multiple integration, vectors and vector calculus, and provides end-of-chapter exercises along with their solutions to aid the readers’ understanding. Written in an approachable style and filled with numerous illustrative examples throughout, Two and Three Dimensional Calculus: with Applications in Science and Engineering assumes no prior knowledge of partial differentiation or vectors and explains difficult concepts with easy to follow examples. Rather than concentrating on mathematical structures, the book describes the development of techniques through their use in science and engineering so that students acquire skills that enable them to be used in a wide variety of practical situations. It also has enough rigor to enable those who wish to investigate the more mathematical generalizations found in most mathematics degrees to do so. Assumes no prior knowledge of partial differentiation, multiple integration or vectors Includes easy-to-follow examples throughout to help explain difficult concepts Features end-of-chapter exercises with solutions to exercises in the book. Two and Three Dimensional Calculus: with Applications in Science and Engineering is an ideal textbook for undergraduate students of engineering and applied sciences as well as those needing to use these methods for real problems in industry and commerce.

Multivariable Calculus with Mathematica

Multivariable Calculus with Mathematica PDF Author: Robert P. Gilbert
Publisher: CRC Press
ISBN: 1351665464
Category : Mathematics
Languages : en
Pages : 431

Get Book Here

Book Description
Multivariable Calculus with Mathematica is a textbook addressing the calculus of several variables. Instead of just using Mathematica to directly solve problems, the students are encouraged to learn the syntax and to write their own code to solve problems. This not only encourages scientific computing skills but at the same time stresses the complete understanding of the mathematics. Questions are provided at the end of the chapters to test the student’s theoretical understanding of the mathematics, and there are also computer algebra questions which test the student’s ability to apply their knowledge in non-trivial ways. Features Ensures that students are not just using the package to directly solve problems, but learning the syntax to write their own code to solve problems Suitable as a main textbook for a Calculus III course, and as a supplementary text for topics scientific computing, engineering, and mathematical physics Written in a style that engages the students’ interest and encourages the understanding of the mathematical ideas

An Illustrative Guide to Multivariable and Vector Calculus

An Illustrative Guide to Multivariable and Vector Calculus PDF Author: Stanley J. Miklavcic
Publisher: Springer Nature
ISBN: 3030334597
Category : Mathematics
Languages : en
Pages : 319

Get Book Here

Book Description
This textbook focuses on one of the most valuable skills in multivariable and vector calculus: visualization. With over one hundred carefully drawn color images, students who have long struggled picturing, for example, level sets or vector fields will find these abstract concepts rendered with clarity and ingenuity. This illustrative approach to the material covered in standard multivariable and vector calculus textbooks will serve as a much-needed and highly useful companion. Emphasizing portability, this book is an ideal complement to other references in the area. It begins by exploring preliminary ideas such as vector algebra, sets, and coordinate systems, before moving into the core areas of multivariable differentiation and integration, and vector calculus. Sections on the chain rule for second derivatives, implicit functions, PDEs, and the method of least squares offer additional depth; ample illustrations are woven throughout. Mastery Checks engage students in material on the spot, while longer exercise sets at the end of each chapter reinforce techniques. An Illustrative Guide to Multivariable and Vector Calculus will appeal to multivariable and vector calculus students and instructors around the world who seek an accessible, visual approach to this subject. Higher-level students, called upon to apply these concepts across science and engineering, will also find this a valuable and concise resource.