Multiscale and Multiresolution Methods

Multiscale and Multiresolution Methods PDF Author: Timothy J. Barth
Publisher: Springer Science & Business Media
ISBN: 9783540424208
Category : Mathematics
Languages : en
Pages : 412

Get Book Here

Book Description
Many computionally challenging problems omnipresent in science and engineering exhibit multiscale phenomena so that the task of computing or even representing all scales of action is computationally very expensive unless the multiscale nature of these problems is exploited in a fundamental way. Some diverse examples of practical interest include the computation of fluid turbulence, structural analysis of composite materials, terabyte data mining, image processing, and a multitude of others. This book consists of both invited and contributed articles which address many facets of efficient multiscale representation and scientific computation from varied viewpoints such as hierarchical data representations, multilevel algorithms, algebraic homogeni- zation, and others. This book should be of particular interest to readers interested in recent and emerging trends in multiscale and multiresolution computation with application to a wide range of practical problems.

Multiscale and Multiresolution Methods

Multiscale and Multiresolution Methods PDF Author: Timothy J. Barth
Publisher: Springer Science & Business Media
ISBN: 9783540424208
Category : Mathematics
Languages : en
Pages : 412

Get Book Here

Book Description
Many computionally challenging problems omnipresent in science and engineering exhibit multiscale phenomena so that the task of computing or even representing all scales of action is computationally very expensive unless the multiscale nature of these problems is exploited in a fundamental way. Some diverse examples of practical interest include the computation of fluid turbulence, structural analysis of composite materials, terabyte data mining, image processing, and a multitude of others. This book consists of both invited and contributed articles which address many facets of efficient multiscale representation and scientific computation from varied viewpoints such as hierarchical data representations, multilevel algorithms, algebraic homogeni- zation, and others. This book should be of particular interest to readers interested in recent and emerging trends in multiscale and multiresolution computation with application to a wide range of practical problems.

Multiresolution Methods in Scattered Data Modelling

Multiresolution Methods in Scattered Data Modelling PDF Author: Armin Iske
Publisher: Springer Science & Business Media
ISBN: 3642187544
Category : Mathematics
Languages : en
Pages : 195

Get Book Here

Book Description
This application-oriented work concerns the design of efficient, robust and reliable algorithms for the numerical simulation of multiscale phenomena. To this end, various modern techniques from scattered data modelling, such as splines over triangulations and radial basis functions, are combined with customized adaptive strategies, which are developed individually in this work. The resulting multiresolution methods include thinning algorithms, multi levelapproximation schemes, and meshfree discretizations for transport equa tions. The utility of the proposed computational methods is supported by their wide range of applications, such as image compression, hierarchical sur face visualization, and multiscale flow simulation. Special emphasis is placed on comparisons between the various numerical algorithms developed in this work and comparable state-of-the-art methods. To this end, extensive numerical examples, mainly arising from real-world applications, are provided. This research monograph is arranged in six chapters: 1. Introduction; 2. Algorithms and Data Structures; 3. Radial Basis Functions; 4. Thinning Algorithms; 5. Multilevel Approximation Schemes; 6. Meshfree Methods for Transport Equations. Chapter 1 provides a preliminary discussion on basic concepts, tools and principles of multiresolution methods, scattered data modelling, multilevel methods and adaptive irregular sampling. Relevant algorithms and data structures, such as triangulation methods, heaps, and quadtrees, are then introduced in Chapter 2.

Multiscale Methods

Multiscale Methods PDF Author: Jacob Fish
Publisher: Oxford University Press
ISBN: 0199233853
Category : Mathematics
Languages : en
Pages : 631

Get Book Here

Book Description
Small scale features and processes occurring at nanometer and femtosecond scales have a profound impact on what happens at a larger scale and over an extensive period of time. The primary objective of this volume is to reflect the state-of-the-art in multiscale mathematics, modeling, and simulations and to address the following barriers: What is the information that needs to be transferred from one model or scale to another and what physical principles must be satisfied during thetransfer of information? What are the optimal ways to achieve such transfer of information? How can variability of physical parameters at multiple scales be quantified and how can it be accounted for to ensure design robustness?The multiscale approaches in space and time presented in this volume are grouped into two main categories: information-passing and concurrent. In the concurrent approaches various scales are simultaneously resolved, whereas in the information-passing methods the fine scale is modeled and its gross response is infused into the continuum scale. The issue of reliability of multiscale modeling and simulation tools which focus on a hierarchy of multiscale models and an a posteriori model of errorestimation including uncertainty quantification, is discussed in several chapters. Component software that can be effectively combined to address a wide range of multiscale simulations is also described. Applications range from advanced materials to nanoelectromechanical systems (NEMS), biologicalsystems, and nanoporous catalysts where physical phenomena operates across 12 orders of magnitude in time scales and 10 orders of magnitude in spatial scales.This volume is a valuable reference book for scientists, engineers and graduate students practicing in traditional engineering and science disciplines as well as in emerging fields of nanotechnology, biotechnology, microelectronics and energy.

Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena

Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena PDF Author: Alexander N. Gorban
Publisher: Springer Science & Business Media
ISBN: 3540358889
Category : Science
Languages : en
Pages : 554

Get Book Here

Book Description
Model reduction and coarse-graining are important in many areas of science and engineering. How does a system with many degrees of freedom become one with fewer? How can a reversible micro-description be adapted to the dissipative macroscopic model? These crucial questions, as well as many other related problems, are discussed in this book. All contributions are by experts whose specialities span a wide range of fields within science and engineering.

Multiscale Modeling

Multiscale Modeling PDF Author: Marco A.R. Ferreira
Publisher: Springer Science & Business Media
ISBN: 0387708979
Category : Business & Economics
Languages : en
Pages : 243

Get Book Here

Book Description
This highly useful book contains methodology for the analysis of data that arise from multiscale processes. It brings together a number of recent developments and makes them accessible to a wider audience. Taking a Bayesian approach allows for full accounting of uncertainty, and also addresses the delicate issue of uncertainty at multiple scales. These methods can handle different amounts of prior knowledge at different scales, as often occurs in practice.

Principles of Multiscale Modeling

Principles of Multiscale Modeling PDF Author: Weinan E
Publisher: Cambridge University Press
ISBN: 1107096545
Category : Mathematics
Languages : en
Pages : 485

Get Book Here

Book Description
A systematic discussion of the fundamental principles, written by a leading contributor to the field.

Multiscale Problems

Multiscale Problems PDF Author: Alain Damlamian
Publisher: World Scientific
ISBN: 9814366889
Category : Mathematics
Languages : en
Pages : 314

Get Book Here

Book Description
The focus of this is on the latest developments related to the analysis of problems in which several scales are presented. After a theoretical presentation of the theory of homogenization in the periodic case, the other contributions address a wide range of applications in the fields of elasticity (asymptotic behavior of nonlinear elastic thin structures, modeling of junction of a periodic family of rods with a plate) and fluid mechanics (stationary Navier?Stokes equations in porous media). Other applications concern the modeling of new composites (electromagnetic and piezoelectric materials) and imperfect transmission problems. A detailed approach of numerical finite element methods is also investigated.

Image Processing and Data Analysis

Image Processing and Data Analysis PDF Author: Jean-Luc Starck
Publisher: Cambridge University Press
ISBN: 0521599148
Category : Image processing
Languages : en
Pages : 301

Get Book Here

Book Description
Powerful techniques have been developed in recent years for the analysis of digital data, especially the manipulation of images. This book provides an in-depth introduction to a range of these innovative, avante-garde data-processing techniques. It develops the reader's understanding of each technique and then shows with practical examples how they can be applied to improve the skills of graduate students and researchers in astronomy, electrical engineering, physics, geophysics and medical imaging. What sets this book apart from others on the subject is the complementary blend of theory and practical application. Throughout, it is copiously illustrated with real-world examples from astronomy, electrical engineering, remote sensing and medicine. It also shows how many, more traditional, methods can be enhanced by incorporating the new wavelet and multiscale methods into the processing. For graduate students and researchers already experienced in image processing and data analysis, this book provides an indispensable guide to a wide range of exciting and original data-analysis techniques.

An Introduction to Element-Based Galerkin Methods on Tensor-Product Bases

An Introduction to Element-Based Galerkin Methods on Tensor-Product Bases PDF Author: Francis X. Giraldo
Publisher: Springer Nature
ISBN: 3030550699
Category : Mathematics
Languages : en
Pages : 572

Get Book Here

Book Description
This book introduces the reader to solving partial differential equations (PDEs) numerically using element-based Galerkin methods. Although it draws on a solid theoretical foundation (e.g. the theory of interpolation, numerical integration, and function spaces), the book’s main focus is on how to build the method, what the resulting matrices look like, and how to write algorithms for coding Galerkin methods. In addition, the spotlight is on tensor-product bases, which means that only line elements (in one dimension), quadrilateral elements (in two dimensions), and cubes (in three dimensions) are considered. The types of Galerkin methods covered are: continuous Galerkin methods (i.e., finite/spectral elements), discontinuous Galerkin methods, and hybridized discontinuous Galerkin methods using both nodal and modal basis functions. In addition, examples are included (which can also serve as student projects) for solving hyperbolic and elliptic partial differential equations, including both scalar PDEs and systems of equations.

Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations

Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations PDF Author: Gabriel R. Barrenechea
Publisher: Springer
ISBN: 3319416405
Category : Computers
Languages : en
Pages : 443

Get Book Here

Book Description
This volume contains contributed survey papers from the main speakers at the LMS/EPSRC Symposium “Building bridges: connections and challenges in modern approaches to numerical partial differential equations”. This meeting took place in July 8-16, 2014, and its main purpose was to gather specialists in emerging areas of numerical PDEs, and explore the connections between the different approaches. The type of contributions ranges from the theoretical foundations of these new techniques, to the applications of them, to new general frameworks and unified approaches that can cover one, or more than one, of these emerging techniques.