Author: Kelly McKennon
Publisher: American Mathematical Soc.
ISBN: 0821818112
Category : Algebraic functions
Languages : en
Pages : 75
Book Description
Multipliers, Positive Functionals, Positive-Definite Functions, and Fourier-Stieltjes Transforms
Author: Kelly McKennon
Publisher: American Mathematical Soc.
ISBN: 0821818112
Category : Algebraic functions
Languages : en
Pages : 75
Book Description
Publisher: American Mathematical Soc.
ISBN: 0821818112
Category : Algebraic functions
Languages : en
Pages : 75
Book Description
Multipliers, Positive Functionals, Positive-definite Functions and Fourier-Stieltjes Transforms
Author: Kelly McKennon
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Trends in Banach Spaces and Operator Theory
Author: Anna KamiĆska
Publisher: American Mathematical Soc.
ISBN: 0821832344
Category : Mathematics
Languages : en
Pages : 386
Book Description
This volume contains proceedings of the conference on Trends in Banach Spaces and Operator Theory, which was devoted to recent advances in theories of Banach spaces and linear operators. Included in the volume are 25 papers, some of which are expository, while others present new results. The articles address the following topics: history of the famous James' theorem on reflexivity, projective tensor products, construction of noncommutative $L p$-spaces via interpolation, Banach spaces with abundance of nontrivial operators, Banach spaces with small spaces of operators, convex geometry of Coxeter-invariant polyhedra, uniqueness of unconditional bases in quasi-Banach spaces, dynamics of cohyponormal operators, and Fourier algebras for locally compact groupoids. The book is suitable for graduate students and research mathematicians interested in Banach spaces and operator theory and their applications.
Publisher: American Mathematical Soc.
ISBN: 0821832344
Category : Mathematics
Languages : en
Pages : 386
Book Description
This volume contains proceedings of the conference on Trends in Banach Spaces and Operator Theory, which was devoted to recent advances in theories of Banach spaces and linear operators. Included in the volume are 25 papers, some of which are expository, while others present new results. The articles address the following topics: history of the famous James' theorem on reflexivity, projective tensor products, construction of noncommutative $L p$-spaces via interpolation, Banach spaces with abundance of nontrivial operators, Banach spaces with small spaces of operators, convex geometry of Coxeter-invariant polyhedra, uniqueness of unconditional bases in quasi-Banach spaces, dynamics of cohyponormal operators, and Fourier algebras for locally compact groupoids. The book is suitable for graduate students and research mathematicians interested in Banach spaces and operator theory and their applications.
Approximate Identities and Factorization in Banach Modules
Author: R. S. Doran
Publisher: Springer
ISBN: 3540385339
Category : Mathematics
Languages : en
Pages : 314
Book Description
Publisher: Springer
ISBN: 3540385339
Category : Mathematics
Languages : en
Pages : 314
Book Description
Encyclopaedia of Mathematics, Supplement III
Author: Michiel Hazewinkel
Publisher: Springer Science & Business Media
ISBN: 0306483734
Category : Mathematics
Languages : en
Pages : 564
Book Description
This is the third supplementary volume to Kluwer's highly acclaimed twelve-volume Encyclopaedia of Mathematics. This additional volume contains nearly 500 new entries written by experts and covers developments and topics not included in the previous volumes. These entries are arranged alphabetically throughout and a detailed index is included. This supplementary volume enhances the existing twelve volumes, and together, these thirteen volumes represent the most authoritative, comprehensive and up-to-date Encyclopaedia of Mathematics available.
Publisher: Springer Science & Business Media
ISBN: 0306483734
Category : Mathematics
Languages : en
Pages : 564
Book Description
This is the third supplementary volume to Kluwer's highly acclaimed twelve-volume Encyclopaedia of Mathematics. This additional volume contains nearly 500 new entries written by experts and covers developments and topics not included in the previous volumes. These entries are arranged alphabetically throughout and a detailed index is included. This supplementary volume enhances the existing twelve volumes, and together, these thirteen volumes represent the most authoritative, comprehensive and up-to-date Encyclopaedia of Mathematics available.
Banach Algebras and the General Theory of *-Algebras: Volume 2, *-Algebras
Author: Theodore W. Palmer
Publisher: Cambridge University Press
ISBN: 9780521366380
Category : Mathematics
Languages : en
Pages : 846
Book Description
This second of two volumes gives a modern exposition of the theory of Banach algebras.
Publisher: Cambridge University Press
ISBN: 9780521366380
Category : Mathematics
Languages : en
Pages : 846
Book Description
This second of two volumes gives a modern exposition of the theory of Banach algebras.
Tulane University Ring and Operator Theory Year, 1970-1971
Author: Karl H. Hofmann
Publisher: Springer
ISBN: 3540371176
Category : Mathematics
Languages : en
Pages : 793
Book Description
Publisher: Springer
ISBN: 3540371176
Category : Mathematics
Languages : en
Pages : 793
Book Description
Amenability
Author: Alan L. T. Paterson
Publisher: American Mathematical Soc.
ISBN: 0821809857
Category : Mathematics
Languages : en
Pages : 474
Book Description
The subject of amenability has its roots in the work of Lebesgue at the turn of the century. In the 1940s, the subject began to shift from finitely additive measures to means. This shift is of fundamental importance, for it makes the substantial resources of functional analysis and abstract harmonic analysis available to the study of amenability. The ubiquity of amenability ideas and the depth of the mathematics involved points to the fundamental importance of the subject. This book presents a comprehensive and coherent account of amenability as it has been developed in the large and varied literature during this century. The book has a broad appeal, for it presents an account of the subject based on harmonic and functional analysis. In addition, the analytic techniques should be of considerable interest to analysts in all areas. In addition, the book contains applications of amenability to a number of areas: combinatorial group theory, semigroup theory, statistics, differential geometry, Lie groups, ergodic theory, cohomology, and operator algebras. The main objectives of the book are to provide an introduction to the subject as a whole and to go into many of its topics in some depth. The book begins with an informal, nontechnical account of amenability from its origins in the work of Lebesgue. The initial chapters establish the basic theory of amenability and provide a detailed treatment of invariant, finitely additive measures (i.e., invariant means) on locally compact groups. The author then discusses amenability for Lie groups, "almost invariant" properties of certain subsets of an amenable group, amenability and ergodic theorems, polynomial growth, and invariant mean cardinalities. Also included are detailed discussions of the two most important achievements in amenability in the 1980s: the solutions to von Neumann's conjecture and the Banach-Ruziewicz Problem. The main prerequisites for this book are a sound understanding of undergraduate-level mathematics and a knowledge of abstract harmonic analysis and functional analysis. The book is suitable for use in graduate courses, and the lists of problems in each chapter may be useful as student exercises.
Publisher: American Mathematical Soc.
ISBN: 0821809857
Category : Mathematics
Languages : en
Pages : 474
Book Description
The subject of amenability has its roots in the work of Lebesgue at the turn of the century. In the 1940s, the subject began to shift from finitely additive measures to means. This shift is of fundamental importance, for it makes the substantial resources of functional analysis and abstract harmonic analysis available to the study of amenability. The ubiquity of amenability ideas and the depth of the mathematics involved points to the fundamental importance of the subject. This book presents a comprehensive and coherent account of amenability as it has been developed in the large and varied literature during this century. The book has a broad appeal, for it presents an account of the subject based on harmonic and functional analysis. In addition, the analytic techniques should be of considerable interest to analysts in all areas. In addition, the book contains applications of amenability to a number of areas: combinatorial group theory, semigroup theory, statistics, differential geometry, Lie groups, ergodic theory, cohomology, and operator algebras. The main objectives of the book are to provide an introduction to the subject as a whole and to go into many of its topics in some depth. The book begins with an informal, nontechnical account of amenability from its origins in the work of Lebesgue. The initial chapters establish the basic theory of amenability and provide a detailed treatment of invariant, finitely additive measures (i.e., invariant means) on locally compact groups. The author then discusses amenability for Lie groups, "almost invariant" properties of certain subsets of an amenable group, amenability and ergodic theorems, polynomial growth, and invariant mean cardinalities. Also included are detailed discussions of the two most important achievements in amenability in the 1980s: the solutions to von Neumann's conjecture and the Banach-Ruziewicz Problem. The main prerequisites for this book are a sound understanding of undergraduate-level mathematics and a knowledge of abstract harmonic analysis and functional analysis. The book is suitable for use in graduate courses, and the lists of problems in each chapter may be useful as student exercises.
Catalog of Copyright Entries. Third Series
Author: Library of Congress. Copyright Office
Publisher: Copyright Office, Library of Congress
ISBN:
Category : Copyright
Languages : en
Pages : 1040
Book Description
Publisher: Copyright Office, Library of Congress
ISBN:
Category : Copyright
Languages : en
Pages : 1040
Book Description
Harmonic Functions on Groups and Fourier Algebras
Author: Cho-Ho Chu
Publisher: Springer
ISBN: 3540477934
Category : Mathematics
Languages : en
Pages : 113
Book Description
This research monograph introduces some new aspects to the theory of harmonic functions and related topics. The authors study the analytic algebraic structures of the space of bounded harmonic functions on locally compact groups and its non-commutative analogue, the space of harmonic functionals on Fourier algebras. Both spaces are shown to be the range of a contractive projection on a von Neumann algebra and therefore admit Jordan algebraic structures. This provides a natural setting to apply recent results from non-associative analysis, semigroups and Fourier algebras. Topics discussed include Poisson representations, Poisson spaces, quotients of Fourier algebras and the Murray-von Neumann classification of harmonic functionals.
Publisher: Springer
ISBN: 3540477934
Category : Mathematics
Languages : en
Pages : 113
Book Description
This research monograph introduces some new aspects to the theory of harmonic functions and related topics. The authors study the analytic algebraic structures of the space of bounded harmonic functions on locally compact groups and its non-commutative analogue, the space of harmonic functionals on Fourier algebras. Both spaces are shown to be the range of a contractive projection on a von Neumann algebra and therefore admit Jordan algebraic structures. This provides a natural setting to apply recent results from non-associative analysis, semigroups and Fourier algebras. Topics discussed include Poisson representations, Poisson spaces, quotients of Fourier algebras and the Murray-von Neumann classification of harmonic functionals.