Multiplexed Single-cell Spatial Proteomics and Transcriptomics

Multiplexed Single-cell Spatial Proteomics and Transcriptomics PDF Author: Manas Mondal
Publisher:
ISBN:
Category : Antigenic determinants
Languages : en
Pages : 169

Get Book Here

Book Description
Single-cell proteomics and transcriptomics analysis are crucial to gain insights of healthy physiology and disease pathogenesis. The comprehensive profiling of biomolecules in individual cells of a heterogeneous system can provide deep insights into many important biological questions, such as the distinct cellular compositions or regulation of inter- and intracellular signaling pathways of healthy and diseased tissues. With multidimensional molecular imaging of many different biomarkers in patient biopsies, diseases can be accurately diagnosed to guide the selection of the ideal treatment. As an urgent need to advance single-cell analysis, imaging-based technologies have been developed to detect and quantify multiple DNA, RNA and protein molecules in single cell in situ. Novel fluorescent probes have been designed and synthesized, which targets specifically either their nucleic acid counterpart or protein epitopes. These highly multiplexed imaging-based platforms have the potential to detect and quantify 100 different protein molecules and 1000 different nucleic acids in a single cell. Using novel fluorescent probes, a large number of biomolecules have been detected and quantified in formalin-fixed paraffin-embedded (FFPE) brain tissue at single-cell resolution. By studying protein expression levels, neuronal heterogeneity has been revealed in distinct subregions of human hippocampus.

Multiplexed Single-cell Spatial Proteomics and Transcriptomics

Multiplexed Single-cell Spatial Proteomics and Transcriptomics PDF Author: Manas Mondal
Publisher:
ISBN:
Category : Antigenic determinants
Languages : en
Pages : 169

Get Book Here

Book Description
Single-cell proteomics and transcriptomics analysis are crucial to gain insights of healthy physiology and disease pathogenesis. The comprehensive profiling of biomolecules in individual cells of a heterogeneous system can provide deep insights into many important biological questions, such as the distinct cellular compositions or regulation of inter- and intracellular signaling pathways of healthy and diseased tissues. With multidimensional molecular imaging of many different biomarkers in patient biopsies, diseases can be accurately diagnosed to guide the selection of the ideal treatment. As an urgent need to advance single-cell analysis, imaging-based technologies have been developed to detect and quantify multiple DNA, RNA and protein molecules in single cell in situ. Novel fluorescent probes have been designed and synthesized, which targets specifically either their nucleic acid counterpart or protein epitopes. These highly multiplexed imaging-based platforms have the potential to detect and quantify 100 different protein molecules and 1000 different nucleic acids in a single cell. Using novel fluorescent probes, a large number of biomolecules have been detected and quantified in formalin-fixed paraffin-embedded (FFPE) brain tissue at single-cell resolution. By studying protein expression levels, neuronal heterogeneity has been revealed in distinct subregions of human hippocampus.

Multiplex Single-cell RNA Sequencing for Chemical Genomics and Spatial Transcriptomics

Multiplex Single-cell RNA Sequencing for Chemical Genomics and Spatial Transcriptomics PDF Author: Sanjay R. Srivatsan
Publisher:
ISBN:
Category :
Languages : en
Pages : 171

Get Book Here

Book Description
Each of us begins life as a single fertilized cell. Following a seemingly predetermined set of cell divisions, the single cell morphs into a rough mass, then a hollowed tube, and finally becomes a recognizable neonatal form. How the information contained within a single cell si- multaneously specifies an organism’s anatomy, the construction of its organs, and the ability to cogitate on this very question, remains one of biology’s open questions. Although centuries of careful experiments devoted to characterizing development have revealed many important genes and mechanisms, the results of these experiments span different model organisms, developmental stages, cell populations and measurement modalities. Integrating this knowledge base into coher- ent representation requires a cellular scaffold that charts an organism’s development over the axes of time and space. Preliminary unified representations of developing organisms (e.g. C. Elegans, Zebrafish and Mouse) have been created by large-scale single cell RNA sequencing (scRNA-seq) efforts. These efforts have characterized the set of intermediates through which differentiating cells transit and have profiled the large number of cell types present in a developing organism. Although scRNA-seq data have proven powerful in cataloging cellular states, they lack crucial context: i) the experimental context afforded by the comparison of multiple conditions (e.g. wild-type vs. perturbation) and ii) a cell’s spatial context, a crucial factor driving its behavior. To address these knowledge gaps, over the course of my PhD I have developed two scRNA-seq technologies: 1) sci- Plex, a generalizable strategy to label cell populations and 2) sci-Space, a methodology to record acell’s spatial position in conjunction with its single cell transcriptome. (1) First I developed the sci-Plex protocol, an inexpensive and efficient method to label single cells through the chemical fixation of unmodified single stranded oligos to nuclei prior to scRNA- seq library preparation. To demonstrate proof-of-concept of the sci-Plex protocol, I performed a high-throughput, high-content drug screen at single cell resolution in 3 cancer cell lines; effectively conducting 4,500 independent scRNA-seq experiments at once. The resulting dataset enabled characterization of a drug’s potency, class, mechanism of action, and the heterogeneity of cellular responses induced upon drug treatment. For example, our scRNA-seq data showed that histone deacetylase inhibitors likely lead to cell death by trapping valuable acetyl molecules on chromatin. (2) Next, I extended the application of the sci-Plex protocol and developed the sci-Space method to capture spatial information from sectioned tissue. The fast and scalable sci-Space method uses patterned oligonucleotide barcodes in a regular array such that each spot contains a unique set of sequences. Then, to mark each nucleus’ coordinates on the grid, the barcodes are stamped onto a tissue section prior to disaggregation and library preparation. To showcase the power of sci-Space, I collected a dataset comprising over 120,000 cells originating from 14 sections of a single E14 mouse embryo. The resulting data uncovers the genes that drive the devel- oping organism’s body plan and reveals a widespread migration signature within neurons that form the developing brain. These data also provide a quantitative assessment of how cell state relates to spatial position within the developing embryo. Specifically, our estimates indicate that 25% of the variance in gene expression observed is attributable to spatial position. It is my hope that this technology will power the generation of a unified scaffold of development akin to the reference genome. I believe that such a unified representation will be instrumental in amassing data, accel- erating discovery and facilitating translation through the training of machine learning models of cellular state.

Revealing Uncharted Biology with Single Cell Multiplex Proteomic Technologies

Revealing Uncharted Biology with Single Cell Multiplex Proteomic Technologies PDF Author: Wendy Fantl
Publisher: Elsevier
ISBN: 0128222093
Category : Science
Languages : en
Pages : 238

Get Book Here

Book Description
Revealing Unchartered Biology with Single Intact Cells: Currently Available Platforms enables researchers in bioscience to visualize cellular phenomena at an unprecedented scale and rate. The book's editors provide an overview of each of the most current techniques, both individually and when used in conjunction. Sections cover CyTof, Multicolor fluorescence cytometry, CODEX multiplexed imaging, MIBI, Imaging Mass Cytometry, Multi resolution cell orientation, Confocal microscopy, QPI and Fluorescence microscopy, CyTOF and SCRNA Seq, CyTOP and scATAC Seq, and CyTOF and ATAC See, and the application of the techniques to biological questions, including chapters on cellular diversity and generating hypothesis through data analysis. The final part is dedicated to further the reader's understanding of complex biological systems by identifying new clinical tools and drug development. This book is the ideal reference for researchers who want to understand the variety of multiplex visualization techniques available for bioscientists and how to make better decisions on how to apply them to the biological question of interest.

MALDI Mass Spectrometry Imaging

MALDI Mass Spectrometry Imaging PDF Author: Tiffany Siegel Porta
Publisher: Royal Society of Chemistry
ISBN: 1839162414
Category : Science
Languages : en
Pages : 541

Get Book Here

Book Description
This book gathers knowledge about matrix-assisted laser desorption ionisation (MALDI) mass spectrometry imaging for postgraduate and professional researchers in academia and in industry where it has direct application to clinical research.

Introduction to Single Cell Omics

Introduction to Single Cell Omics PDF Author: Xinghua Pan
Publisher: Frontiers Media SA
ISBN: 2889459209
Category :
Languages : en
Pages : 129

Get Book Here

Book Description
Single-cell omics is a progressing frontier that stems from the sequencing of the human genome and the development of omics technologies, particularly genomics, transcriptomics, epigenomics and proteomics, but the sensitivity is now improved to single-cell level. The new generation of methodologies, especially the next generation sequencing (NGS) technology, plays a leading role in genomics related fields; however, the conventional techniques of omics require number of cells to be large, usually on the order of millions of cells, which is hardly accessible in some cases. More importantly, harnessing the power of omics technologies and applying those at the single-cell level are crucial since every cell is specific and unique, and almost every cell population in every systems, derived in either vivo or in vitro, is heterogeneous. Deciphering the heterogeneity of the cell population hence becomes critical for recognizing the mechanism and significance of the system. However, without an extensive examination of individual cells, a massive analysis of cell population would only give an average output of the cells, but neglect the differences among cells. Single-cell omics seeks to study a number of individual cells in parallel for their different dimensions of molecular profile on genome-wide scale, providing unprecedented resolution for the interpretation of both the structure and function of an organ, tissue or other system, as well as the interaction (and communication) and dynamics of single cells or subpopulations of cells and their lineages. Importantly single-cell omics enables the identification of a minor subpopulation of cells that may play a critical role in biological process over a dominant subpolulation such as a cancer and a developing organ. It provides an ultra-sensitive tool for us to clarify specific molecular mechanisms and pathways and reveal the nature of cell heterogeneity. Besides, it also empowers the clinical investigation of patients when facing a very low quantity of cell available for analysis, such as noninvasive cancer screening with circulating tumor cells (CTC), noninvasive prenatal diagnostics (NIPD) and preimplantation genetic test (PGT) for in vitro fertilization. Single-cell omics greatly promotes the understanding of life at a more fundamental level, bring vast applications in medicine. Accordingly, single-cell omics is also called as single-cell analysis or single-cell biology. Within only a couple of years, single-cell omics, especially transcriptomic sequencing (scRNA-seq), whole genome and exome sequencing (scWGS, scWES), has become robust and broadly accessible. Besides the existing technologies, recently, multiplexing barcode design and combinatorial indexing technology, in combination with microfluidic platform exampled by Drop-seq, or even being independent of microfluidic platform but using a regular PCR-plate, enable us a greater capacity of single cell analysis, switching from one single cell to thousands of single cells in a single test. The unique molecular identifiers (UMIs) allow the amplification bias among the original molecules to be corrected faithfully, resulting in a reliable quantitative measurement of omics in single cells. Of late, a variety of single-cell epigenomics analyses are becoming sophisticated, particularly single cell chromatin accessibility (scATAC-seq) and CpG methylation profiling (scBS-seq, scRRBS-seq). High resolution single molecular Fluorescence in situ hybridization (smFISH) and its revolutionary versions (ex. seqFISH, MERFISH, and so on), in addition to the spatial transcriptome sequencing, make the native relationship of the individual cells of a tissue to be in 3D or 4D format visually and quantitatively clarified. On the other hand, CRISPR/cas9 editing-based In vivo lineage tracing methods enable dynamic profile of a whole developmental process to be accurately displayed. Multi-omics analysis facilitates the study of multi-dimensional regulation and relationship of different elements of the central dogma in a single cell, as well as permitting a clear dissection of the complicated omics heterogeneity of a system. Last but not the least, the technology, biological noise, sequence dropout, and batch effect bring a huge challenge to the bioinformatics of single cell omics. While significant progress in the data analysis has been made since then, revolutionary theory and algorithm logics for single cell omics are expected. Indeed, single-cell analysis exert considerable impacts on the fields of biological studies, particularly cancers, neuron and neural system, stem cells, embryo development and immune system; other than that, it also tremendously motivates pharmaceutic RD, clinical diagnosis and monitoring, as well as precision medicine. This book hereby summarizes the recent developments and general considerations of single-cell analysis, with a detailed presentation on selected technologies and applications. Starting with the experimental design on single-cell omics, the book then emphasizes the consideration on heterogeneity of cancer and other systems. It also gives an introduction of the basic methods and key facts for bioinformatics analysis. Secondary, this book provides a summary of two types of popular technologies, the fundamental tools on single-cell isolation, and the developments of single cell multi-omics, followed by descriptions of FISH technologies, though other popular technologies are not covered here due to the fact that they are intensively described here and there recently. Finally, the book illustrates an elastomer-based integrated fluidic circuit that allows a connection between single cell functional studies combining stimulation, response, imaging and measurement, and corresponding single cell sequencing. This is a model system for single cell functional genomics. In addition, it reports a pipeline for single-cell proteomics with an analysis of the early development of Xenopus embryo, a single-cell qRT-PCR application that defined the subpopulations related to cell cycling, and a new method for synergistic assembly of single cell genome with sequencing of amplification product by phi29 DNA polymerase. Due to the tremendous progresses of single-cell omics in recent years, the topics covered here are incomplete, but each individual topic is excellently addressed, significantly interesting and beneficial to scientists working in or affiliated with this field.

Molecular Neuroanatomy

Molecular Neuroanatomy PDF Author: Fred W. Leeuwen
Publisher: Elsevier Publishing Company
ISBN:
Category : Medical
Languages : en
Pages : 456

Get Book Here

Book Description
For a thorough study of the dynamics of particular brain compounds it is now possible to use and combine various molecular neuroanatomical methods (e.g. in situ hybridization, receptor localisation and immunocytochemistry) in a quantitative way on whole brain sections maintaining morphological details. Molecular Neuroanatomy deals with the many practical aspects and recent developments in these areas. The theoretical background of many techniques is presented, as well as clear, step-by-step instructions on the preparation and application of all the methods and techniques described in this book. It will be invaluable to all those working in the field of neuroscience. Available in both hardback and paperback, with colour illustrations.

The Mouse Nervous System

The Mouse Nervous System PDF Author: Charles Watson
Publisher: Academic Press
ISBN: 0123694973
Category : Science
Languages : en
Pages : 815

Get Book Here

Book Description
The Mouse Nervous System provides a comprehensive account of the central nervous system of the mouse. The book is aimed at molecular biologists who need a book that introduces them to the anatomy of the mouse brain and spinal cord, but also takes them into the relevant details of development and organization of the area they have chosen to study. The Mouse Nervous System offers a wealth of new information for experienced anatomists who work on mice. The book serves as a valuable resource for researchers and graduate students in neuroscience. Systematic consideration of the anatomy and connections of all regions of the brain and spinal cord by the authors of the most cited rodent brain atlases A major section (12 chapters) on functional systems related to motor control, sensation, and behavioral and emotional states A detailed analysis of gene expression during development of the forebrain by Luis Puelles, the leading researcher in this area Full coverage of the role of gene expression during development and the new field of genetic neuroanatomy using site-specific recombinases Examples of the use of mouse models in the study of neurological illness

Evolution of Translational Omics

Evolution of Translational Omics PDF Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309224187
Category : Science
Languages : en
Pages : 354

Get Book Here

Book Description
Technologies collectively called omics enable simultaneous measurement of an enormous number of biomolecules; for example, genomics investigates thousands of DNA sequences, and proteomics examines large numbers of proteins. Scientists are using these technologies to develop innovative tests to detect disease and to predict a patient's likelihood of responding to specific drugs. Following a recent case involving premature use of omics-based tests in cancer clinical trials at Duke University, the NCI requested that the IOM establish a committee to recommend ways to strengthen omics-based test development and evaluation. This report identifies best practices to enhance development, evaluation, and translation of omics-based tests while simultaneously reinforcing steps to ensure that these tests are appropriately assessed for scientific validity before they are used to guide patient treatment in clinical trials.

Single Cell Protein Analysis

Single Cell Protein Analysis PDF Author: Anup K. Singh
Publisher: Humana
ISBN: 9781493929863
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
This volume highlights recent developments in flow cytometry, affinity assays, imaging, mass spectrometry, microfluidics and other technologies that enable analysis of proteins at the single cell level. The book also includes chapters covering a suite of biochemical and biophysical methods capable of making an entire gamut of proteomic measurements, including analysis of protein abundance or expression, protein interaction networks, post-translational modifications, translocation and enzymatic activity. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and tips on troubleshooting and avoiding known pitfalls. Authoritative and thorough, Single Cell Protein Analysis: Methods and Protocols is useful to researchers and students in biological and biomedical sciences who have an interest in proteomic measurements in cells.

High-throughput Multiplexed Transcriptome and Protein Measurements in Single Cells

High-throughput Multiplexed Transcriptome and Protein Measurements in Single Cells PDF Author: Shirin Shivaei
Publisher:
ISBN:
Category :
Languages : en
Pages : 47

Get Book Here

Book Description
We present cell gels, a platform for high-throughput multiplexed measurements of transcriptome and proteome in single cells. This method takes advantage of droplet barcoding and hydrogel chemistry to capture mRNAs and proteins in thousands of cells. We report the challenges of acquiring sequencing data from cell gels due to complex mechanisms underlying bead based library prep in polyacrylamide gels. We show the applications of this method in detecting intracellular proteins, sorting based on intracellular markers after cell lysis, and expanding thousands of cells in single droplets.