Multiple Light Scattering

Multiple Light Scattering PDF Author: H Van de Hulst
Publisher: Elsevier
ISBN: 032315557X
Category : Science
Languages : en
Pages : 332

Get Book Here

Book Description
Multiple Light Scattering: Tables, Formulas, and Applications, Volume 1 serves to give concise and handy information related to multiple scattering theory in such a way that the reader would not have to rely on extensive literature on the subject. The book is divided into two parts. Part I: General Theory covers the basic concepts, terms, and notations related to multiple scattering theory; exponential integrals and related functions; reciprocity and detailed balance; different related methods; and homogenous atmospheres with arbitrary phase function and single-scattering albedo. Part II: Isotropic Scattering discusses related concepts such as solutions using the Milne operator; semi-infinite atmospheres; the H-functions; and finite slabs. The text is recommended for practitioners in optics, atmospheric physics, astronomy, and other fields that need a reference book in the subject of multiple light scattering.

Light Scattering Reviews

Light Scattering Reviews PDF Author: Alexander A. Kokhanovsky
Publisher: Springer Science & Business Media
ISBN: 3540376720
Category : Science
Languages : en
Pages : 509

Get Book Here

Book Description
This book provides an account of recent developments in light scattering media optics. Leading researchers focus on both the theoretical and experimental results in the area. In particular, light scattering by ice crystals, soil particles and biological particles is considered. This volume first discusses single light scattering, followed by multiple light scattering and finally examines possible applications in combustion and marine research.

Multiple Scattering of Light by Particles

Multiple Scattering of Light by Particles PDF Author: Michael I. Mishchenko
Publisher: Cambridge University Press
ISBN: 9780521834902
Category : Science
Languages : en
Pages : 520

Get Book Here

Book Description
This monograph on multiple scattering of light by small particles is an ideal resource for science professionals, engineers, and graduate students.

Introduction to Dynamic Light Scattering by Macromolecules

Introduction to Dynamic Light Scattering by Macromolecules PDF Author: Kenneth S Schmitz
Publisher: Elsevier
ISBN: 0323140351
Category : Science
Languages : en
Pages : 470

Get Book Here

Book Description
An Introduction to Dynamic Light Scattering by Macromolecules provides an introduction to the basic concepts of dynamic light scattering (DLS), with an emphasis on the interpretation of DLS data. It presents the appropriate equations used to interpret DLS data. The material is presented in order of increasing complexity of the systems under examination, ranging from dilute solutions of noninteracting particles to concentrated multicomponent solutions of strongly interacting particles and gels. Problems are presented at the end of each chapter to emphasize these concepts. Since a major emphasis of this textbook is the interpretation of DLS data obtained by polarized light scattering studies on macromolecular solutions, the results of complementary experimental techniques are also presented in order to gain insight into the dynamics of these systems. This textbook is intended for (1) advanced undergraduate students and graduate students in the chemical, physical, and biological sciences; (2) scientists who might wish to apply DLS methods to systems of interest to them but who have no formal training in the field of DLS; and (3) those who are simply curious as to the type of information that might be obtained from DLS techniques.

Light Scattering in Inhomogeneous Atmospheres

Light Scattering in Inhomogeneous Atmospheres PDF Author: Edgard G. Yanovitskij
Publisher: Springer Science & Business Media
ISBN: 364260465X
Category : Science
Languages : en
Pages : 380

Get Book Here

Book Description
This book is aimed at studying the scattering of monochromatic radiation in plane inhomogeneous media. We are dealing with the media whose optical properties depend on a single spatial coordinate, namely of a depth. The most widely known books on radiation transfer, for instance 1. S. Chandrasekhar, Radiative Transfer, Oxford, Clarendon Press, 1950, (RT), 2. V. V. Sobolev, Light Scattering in Planetary Atmospheres, New York, Pergamon Press, 1975, (LSPA), 3. H. C. van de Hulst, Multiple Light Scattering. Tables, Formulas and - plications. Vol. 1,2, New York, Academic Press, 1980, (MLS), treat mainly the homogeneous atmospheres. However, as known, the actual atmospheres of stars and planets, basins of water, and other artificial and nat ural media are not homogeneous. This book deals with the model of vertically inhomogeneous atmosphere, which is closer to reality than the homogeneous models. This book is close to the aforementioned monographs in its scope of prob lems and style. Therefore, I guess that a preliminary knowledge of the con tents of these books, particularly of the book by Sobolev, would facilitate the readers' task substantially. On the other hand, all concepts, problems, and equations used in this book are considered in full in Chap. 1. So, it will be possible for those readers who do not possess the above knowledge to understand this book. A general idea about the content of the book can be gained from both the Introduction and the Table of Contents.

Light Scattering Reviews 4

Light Scattering Reviews 4 PDF Author: Alexander A. Kokhanovsky
Publisher: Springer Science & Business Media
ISBN: 354074276X
Category : Science
Languages : en
Pages : 516

Get Book Here

Book Description
This fourth volume of Light Scattering Reviews is composed of three parts. The ?rstpartisconcernedwiththeoreticalandexperimentalstudiesofsinglelightsc- tering by small nonspherical particles. Light scattering by small particles such as, for instance, droplets in the terrestrial clouds is a well understood area of physical optics. On the other hand, exact theoretical calculations of light scattering p- terns for most of nonspherical and irregularly shaped particles can be performed only for the restricted values of the size parameter, which is proportional to the ratio of the characteristic size of the particle to the wavelength?. For the large nonspherical particles, approximations are used (e. g. , ray optics). The exact th- retical techniques such as the T-matrix method cannot be used for extremely large particles, such as those in ice clouds, because then the size parameter in the v- iblex=2?a/???,wherea is the characteristic size (radius for spheres), and the associated numerical codes become unstable and produce wrong answers. Yet another problem is due to the fact that particles in many turbid media (e. g. , dust clouds) cannot be characterized by a single shape. Often, refractive indices also vary. Because of problems with theoretical calculations, experimental (i. e. , la- ratory) investigations are important for the characterization and understanding of the optical properties of such types of particles. The ?rst paper in this volume, written by B. Gustafson, is aimed at the descr- tionofscaledanalogueexperimentsinelectromagneticscattering.

Principles of Scattering and Transport of Light

Principles of Scattering and Transport of Light PDF Author: Rémi Carminati
Publisher: Cambridge University Press
ISBN: 1107146933
Category : Science
Languages : en
Pages : 379

Get Book Here

Book Description
A systematic and accessible treatment of light scattering and transport in disordered media from first principles.

Reflectance Spectroscopy

Reflectance Spectroscopy PDF Author: Gustav Kortüm
Publisher: Springer Science & Business Media
ISBN: 3642880711
Category : Science
Languages : en
Pages : 372

Get Book Here

Book Description
Reflectance spectroscopy is the investigation of the spectral composi tion of surface-reflected radiation with respect to its angularly dependent intensity and the composition of the incident primary radiation. Two limiting cases are important: The first concerns regular (specular) reflection from a smooth surface, and the second diffuse reflection from an ideal matte surface. All possible variations are found in practice between these two extremes. For the two extreme cases, two fundamentally different methods of reflectance spectroscopy are employed: The first of these consists in evaluating the optical constants n (refractive index) and x (absorption index) from the measured regular reflection by means of the Fresnel equations as a function of the wave A. This rather old and very troublesome procedure, which is length incapable of very accurate results, has recently been modified by Fahren fort by replacing the air-sample phase boundary by the phase boundary between a dielectric of higher refractive index (n ) and the sample (n ). 1 2 If the sample absorbs no radiation and the angle of incidence exceeds a certain definite value, total reflection occurs. On close optical contact between the two phases, a small amount of energy is transferred into the less dense phase because of diffraction phenomena at the edges of the incident beam. The energy flux in the two directions through the phase boundary caused by this is equal, however, so that 'total reflection takes place.

Tissue Optics

Tissue Optics PDF Author: Valery Tuchin
Publisher:
ISBN: 9781628415162
Category : Diagnostic imaging
Languages : en
Pages : 988

Get Book Here

Book Description
This third edition of the biomedical optics classic Tissue Optics covers the continued intensive growth in tissue optics—in particular, the field of tissue diagnostics and imaging—that has occurred since 2007. As in the first two editions, Part I describes fundamentals and basic research, and Part II presents instrumentation and medical applications. However, for the reader’s convenience, this third edition has been reorganized into 14 chapters instead of 9. The chapters covering optical coherence tomography, digital holography and interferometry, controlling optical properties of tissues, nonlinear spectroscopy, and imaging have all been substantially updated. The book is intended for researchers, teachers, and graduate and undergraduate students specializing in the physics of living systems, biomedical optics and biophotonics, laser biophysics, and applications of lasers in biomedicine. It can also be used as a textbook for courses in medical physics, medical engineering, and medical biology.

Light Scattering by Nonspherical Particles

Light Scattering by Nonspherical Particles PDF Author: Michael I. Mishchenko
Publisher: Elsevier
ISBN: 0080510205
Category : Science
Languages : en
Pages : 721

Get Book Here

Book Description
There is hardly a field of science or engineering that does not have some interest in light scattering by small particles. For example, this subject is important to climatology because the energy budget for the Earth's atmosphere is strongly affected by scattering of solar radiation by cloud and aerosol particles, and the whole discipline of remote sensing relies largely on analyzing the parameters of radiation scattered by aerosols, clouds, and precipitation. The scattering of light by spherical particles can be easily computed using the conventional Mie theory. However, most small solid particles encountered in natural and laboratory conditions have nonspherical shapes. Examples are soot and mineral aerosols, cirrus cloud particles, snow and frost crystals, ocean hydrosols, interplanetary and cometary dust grains, and microorganisms. It is now well known that scattering properties of nonspherical particles can differ dramatically from those of "equivalent" (e.g., equal-volume or equal-surface-area) spheres. Therefore, the ability to accurately compute or measure light scattering by nonspherical particles in order to clearly understand the effects of particle nonsphericity on light scattering is very important. The rapid improvement of computers and experimental techniques over the past 20 years and the development of efficient numerical approaches have resulted in major advances in this field which have not been systematically summarized. Because of the universal importance of electromagnetic scattering by nonspherical particles, papers on different aspects of this subject are scattered over dozens of diverse research and engineering journals. Often experts in one discipline (e.g., biology) are unaware of potentially useful results obtained in another discipline (e.g., antennas and propagation). This leads to an inefficient use of the accumulated knowledge and unnecessary redundancy in research activities. This book offers the first systematic and unified discussion of light scattering by nonspherical particles and its practical applications and represents the state-of-the-art of this important research field. Individual chapters are written by leading experts in respective areas and cover three major disciplines: theoretical and numerical techniques, laboratory measurements, and practical applications. An overview chapter provides a concise general introduction to the subject of nonspherical scattering and should be especially useful to beginners and those interested in fast practical applications. The audience for this book will include graduate students, scientists, and engineers working on specific aspects of electromagnetic scattering by small particles and its applications in remote sensing, geophysics, astrophysics, biomedical optics, and optical engineering. - The first systematic and comprehensive treatment of electromagnetic scattering by nonspherical particles and its applications - Individual chapters are written by leading experts in respective areas - Includes a survey of all the relevant literature scattered over dozens of basic and applied research journals - Consistent use of unified definitions and notation makes the book a coherent volume - An overview chapter provides a concise general introduction to the subject of light scattering by nonspherical particles - Theoretical chapters describe specific easy-to-use computer codes publicly available on the World Wide Web - Extensively illustrated with over 200 figures, 4 in color