Multiple Imputation and its Application

Multiple Imputation and its Application PDF Author: James Carpenter
Publisher: John Wiley & Sons
ISBN: 1119942276
Category : Medical
Languages : en
Pages : 368

Get Book Here

Book Description
A practical guide to analysing partially observeddata. Collecting, analysing and drawing inferences from data iscentral to research in the medical and social sciences.Unfortunately, it is rarely possible to collect all the intendeddata. The literature on inference from the resultingincomplete data is now huge, and continues to grow both asmethods are developed for large and complex data structures, and asincreasing computer power and suitable software enable researchersto apply these methods. This book focuses on a particular statistical method foranalysing and drawing inferences from incomplete data, calledMultiple Imputation (MI). MI is attractive because it is bothpractical and widely applicable. The authors aim is to clarify theissues raised by missing data, describing the rationale for MI, therelationship between the various imputation models and associatedalgorithms and its application to increasingly complex datastructures. Multiple Imputation and its Application: Discusses the issues raised by the analysis of partiallyobserved data, and the assumptions on which analyses rest. Presents a practical guide to the issues to consider whenanalysing incomplete data from both observational studies andrandomized trials. Provides a detailed discussion of the practical use of MI withreal-world examples drawn from medical and social statistics. Explores handling non-linear relationships and interactionswith multiple imputation, survival analysis, multilevel multipleimputation, sensitivity analysis via multiple imputation, usingnon-response weights with multiple imputation and doubly robustmultiple imputation. Multiple Imputation and its Application is aimed atquantitative researchers and students in the medical and socialsciences with the aim of clarifying the issues raised by theanalysis of incomplete data data, outlining the rationale for MIand describing how to consider and address the issues that arise inits application.

Multiple Imputation and its Application

Multiple Imputation and its Application PDF Author: James Carpenter
Publisher: John Wiley & Sons
ISBN: 1119942276
Category : Medical
Languages : en
Pages : 368

Get Book Here

Book Description
A practical guide to analysing partially observeddata. Collecting, analysing and drawing inferences from data iscentral to research in the medical and social sciences.Unfortunately, it is rarely possible to collect all the intendeddata. The literature on inference from the resultingincomplete data is now huge, and continues to grow both asmethods are developed for large and complex data structures, and asincreasing computer power and suitable software enable researchersto apply these methods. This book focuses on a particular statistical method foranalysing and drawing inferences from incomplete data, calledMultiple Imputation (MI). MI is attractive because it is bothpractical and widely applicable. The authors aim is to clarify theissues raised by missing data, describing the rationale for MI, therelationship between the various imputation models and associatedalgorithms and its application to increasingly complex datastructures. Multiple Imputation and its Application: Discusses the issues raised by the analysis of partiallyobserved data, and the assumptions on which analyses rest. Presents a practical guide to the issues to consider whenanalysing incomplete data from both observational studies andrandomized trials. Provides a detailed discussion of the practical use of MI withreal-world examples drawn from medical and social statistics. Explores handling non-linear relationships and interactionswith multiple imputation, survival analysis, multilevel multipleimputation, sensitivity analysis via multiple imputation, usingnon-response weights with multiple imputation and doubly robustmultiple imputation. Multiple Imputation and its Application is aimed atquantitative researchers and students in the medical and socialsciences with the aim of clarifying the issues raised by theanalysis of incomplete data data, outlining the rationale for MIand describing how to consider and address the issues that arise inits application.

Flexible Imputation of Missing Data, Second Edition

Flexible Imputation of Missing Data, Second Edition PDF Author: Stef van Buuren
Publisher: CRC Press
ISBN: 0429960352
Category : Mathematics
Languages : en
Pages : 444

Get Book Here

Book Description
Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the second edition of a popular book on multiple imputation, focused on explaining the application of methods through detailed worked examples using the MICE package as developed by the author. This new edition incorporates the recent developments in this fast-moving field. This class-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by verbal statements that explain the formula in accessible terms. The book sharpens the reader’s intuition on how to think about missing data, and provides all the tools needed to execute a well-grounded quantitative analysis in the presence of missing data.

Multiple Imputation and its Application

Multiple Imputation and its Application PDF Author: James R. Carpenter
Publisher: John Wiley & Sons
ISBN: 1119756103
Category : Medical
Languages : en
Pages : 469

Get Book Here

Book Description
Multiple Imputation and its Application The most up-to-date edition of a bestselling guide to analyzing partially observed data In this comprehensively revised Second Edition of Multiple Imputation and its Application, a team of distinguished statisticians delivers an overview of the issues raised by missing data, the rationale for multiple imputation as a solution, and the practicalities of applying it in a multitude of settings. With an accessible and carefully structured presentation aimed at quantitative researchers, Multiple Imputation and its Application is illustrated with a range of examples and offers key mathematical details. The book includes a wide range of theoretical and computer-based exercises, tested in the classroom, which are especially useful for users of R or Stata. Readers will find: A comprehensive overview of one of the most effective and popular methodologies for dealing with incomplete data sets Careful discussion of key concepts A range of examples illustrating the key ideas Practical advice on using multiple imputation Exercises and examples designed for use in the classroom and/or private study Written for applied researchers looking to use multiple imputation with confidence, and for methods researchers seeking an accessible overview of the topic, Multiple Imputation and its Application will also earn a place in the libraries of graduate students undertaking quantitative analyses.

Multiple Imputation of Missing Data in Practice

Multiple Imputation of Missing Data in Practice PDF Author: Yulei He
Publisher: CRC Press
ISBN: 0429530978
Category : Mathematics
Languages : en
Pages : 419

Get Book Here

Book Description
Multiple Imputation of Missing Data in Practice: Basic Theory and Analysis Strategies provides a comprehensive introduction to the multiple imputation approach to missing data problems that are often encountered in data analysis. Over the past 40 years or so, multiple imputation has gone through rapid development in both theories and applications. It is nowadays the most versatile, popular, and effective missing-data strategy that is used by researchers and practitioners across different fields. There is a strong need to better understand and learn about multiple imputation in the research and practical community. Accessible to a broad audience, this book explains statistical concepts of missing data problems and the associated terminology. It focuses on how to address missing data problems using multiple imputation. It describes the basic theory behind multiple imputation and many commonly-used models and methods. These ideas are illustrated by examples from a wide variety of missing data problems. Real data from studies with different designs and features (e.g., cross-sectional data, longitudinal data, complex surveys, survival data, studies subject to measurement error, etc.) are used to demonstrate the methods. In order for readers not only to know how to use the methods, but understand why multiple imputation works and how to choose appropriate methods, simulation studies are used to assess the performance of the multiple imputation methods. Example datasets and sample programming code are either included in the book or available at a github site (https://github.com/he-zhang-hsu/multiple_imputation_book). Key Features Provides an overview of statistical concepts that are useful for better understanding missing data problems and multiple imputation analysis Provides a detailed discussion on multiple imputation models and methods targeted to different types of missing data problems (e.g., univariate and multivariate missing data problems, missing data in survival analysis, longitudinal data, complex surveys, etc.) Explores measurement error problems with multiple imputation Discusses analysis strategies for multiple imputation diagnostics Discusses data production issues when the goal of multiple imputation is to release datasets for public use, as done by organizations that process and manage large-scale surveys with nonresponse problems For some examples, illustrative datasets and sample programming code from popular statistical packages (e.g., SAS, R, WinBUGS) are included in the book. For others, they are available at a github site (https://github.com/he-zhang-hsu/multiple_imputation_book)

Multiple Imputation and its Application

Multiple Imputation and its Application PDF Author: James Carpenter
Publisher: John Wiley & Sons
ISBN: 111844261X
Category : Medical
Languages : en
Pages : 308

Get Book Here

Book Description
A practical guide to analysing partially observed data. Collecting, analysing and drawing inferences from data is central to research in the medical and social sciences. Unfortunately, it is rarely possible to collect all the intended data. The literature on inference from the resulting incomplete data is now huge, and continues to grow both as methods are developed for large and complex data structures, and as increasing computer power and suitable software enable researchers to apply these methods. This book focuses on a particular statistical method for analysing and drawing inferences from incomplete data, called Multiple Imputation (MI). MI is attractive because it is both practical and widely applicable. The authors aim is to clarify the issues raised by missing data, describing the rationale for MI, the relationship between the various imputation models and associated algorithms and its application to increasingly complex data structures. Multiple Imputation and its Application: Discusses the issues raised by the analysis of partially observed data, and the assumptions on which analyses rest. Presents a practical guide to the issues to consider when analysing incomplete data from both observational studies and randomized trials. Provides a detailed discussion of the practical use of MI with real-world examples drawn from medical and social statistics. Explores handling non-linear relationships and interactions with multiple imputation, survival analysis, multilevel multiple imputation, sensitivity analysis via multiple imputation, using non-response weights with multiple imputation and doubly robust multiple imputation. Multiple Imputation and its Application is aimed at quantitative researchers and students in the medical and social sciences with the aim of clarifying the issues raised by the analysis of incomplete data data, outlining the rationale for MI and describing how to consider and address the issues that arise in its application.

Multiple Imputation of Missing Data Using SAS

Multiple Imputation of Missing Data Using SAS PDF Author: Patricia Berglund
Publisher: SAS Institute
ISBN: 162959203X
Category : Computers
Languages : en
Pages : 328

Get Book Here

Book Description
Find guidance on using SAS for multiple imputation and solving common missing data issues. Multiple Imputation of Missing Data Using SAS provides both theoretical background and constructive solutions for those working with incomplete data sets in an engaging example-driven format. It offers practical instruction on the use of SAS for multiple imputation and provides numerous examples that use a variety of public release data sets with applications to survey data. Written for users with an intermediate background in SAS programming and statistics, this book is an excellent resource for anyone seeking guidance on multiple imputation. The authors cover the MI and MIANALYZE procedures in detail, along with other procedures used for analysis of complete data sets. They guide analysts through the multiple imputation process, including evaluation of missing data patterns, choice of an imputation method, execution of the process, and interpretation of results. Topics discussed include how to deal with missing data problems in a statistically appropriate manner, how to intelligently select an imputation method, how to incorporate the uncertainty introduced by the imputation process, and how to incorporate the complex sample design (if appropriate) through use of the SAS SURVEY procedures. Discover the theoretical background and see extensive applications of the multiple imputation process in action. This book is part of the SAS Press program.

Multiple Imputation for Nonresponse in Surveys

Multiple Imputation for Nonresponse in Surveys PDF Author: Donald B. Rubin
Publisher: John Wiley & Sons
ISBN: 0470317361
Category : Mathematics
Languages : en
Pages : 258

Get Book Here

Book Description
Demonstrates how nonresponse in sample surveys and censuses can be handled by replacing each missing value with two or more multiple imputations. Clearly illustrates the advantages of modern computing to such handle surveys, and demonstrates the benefit of this statistical technique for researchers who must analyze them. Also presents the background for Bayesian and frequentist theory. After establishing that only standard complete-data methods are needed to analyze a multiply-imputed set, the text evaluates procedures in general circumstances, outlining specific procedures for creating imputations in both the ignorable and nonignorable cases. Examples and exercises reinforce ideas, and the interplay of Bayesian and frequentist ideas presents a unified picture of modern statistics.

Applied Missing Data Analysis

Applied Missing Data Analysis PDF Author: Craig K. Enders
Publisher: Guilford Press
ISBN: 1606236393
Category : Psychology
Languages : en
Pages : 401

Get Book Here

Book Description
Walking readers step by step through complex concepts, this book translates missing data techniques into something that applied researchers and graduate students can understand and utilize in their own research. Enders explains the rationale and procedural details for maximum likelihood estimation, Bayesian estimation, multiple imputation, and models for handling missing not at random (MNAR) data. Easy-to-follow examples and small simulated data sets illustrate the techniques and clarify the underlying principles. The companion website includes data files and syntax for the examples in the book as well as up-to-date information on software. The book is accessible to substantive researchers while providing a level of detail that will satisfy quantitative specialists. This book will appeal to researchers and graduate students in psychology, education, management, family studies, public health, sociology, and political science. It will also serve as a supplemental text for doctoral-level courses or seminars in advanced quantitative methods, survey analysis, longitudinal data analysis, and multilevel modeling, and as a primary text for doctoral-level courses or seminars in missing data.

Handbook of Missing Data Methodology

Handbook of Missing Data Methodology PDF Author: Geert Molenberghs
Publisher: CRC Press
ISBN: 1439854610
Category : Mathematics
Languages : en
Pages : 600

Get Book Here

Book Description
Missing data affect nearly every discipline by complicating the statistical analysis of collected data. But since the 1990s, there have been important developments in the statistical methodology for handling missing data. Written by renowned statisticians in this area, Handbook of Missing Data Methodology presents many methodological advances and the latest applications of missing data methods in empirical research. Divided into six parts, the handbook begins by establishing notation and terminology. It reviews the general taxonomy of missing data mechanisms and their implications for analysis and offers a historical perspective on early methods for handling missing data. The following three parts cover various inference paradigms when data are missing, including likelihood and Bayesian methods; semi-parametric methods, with particular emphasis on inverse probability weighting; and multiple imputation methods. The next part of the book focuses on a range of approaches that assess the sensitivity of inferences to alternative, routinely non-verifiable assumptions about the missing data process. The final part discusses special topics, such as missing data in clinical trials and sample surveys as well as approaches to model diagnostics in the missing data setting. In each part, an introduction provides useful background material and an overview to set the stage for subsequent chapters. Covering both established and emerging methodologies for missing data, this book sets the scene for future research. It provides the framework for readers to delve into research and practical applications of missing data methods.

Clinical Trials with Missing Data

Clinical Trials with Missing Data PDF Author: Michael O'Kelly
Publisher: John Wiley & Sons
ISBN: 1118762533
Category : Medical
Languages : en
Pages : 472

Get Book Here

Book Description
This book provides practical guidance for statisticians, clinicians, and researchers involved in clinical trials in the biopharmaceutical industry, medical and public health organisations. Academics and students needing an introduction to handling missing data will also find this book invaluable. The authors describe how missing data can affect the outcome and credibility of a clinical trial, show by examples how a clinical team can work to prevent missing data, and present the reader with approaches to address missing data effectively. The book is illustrated throughout with realistic case studies and worked examples, and presents clear and concise guidelines to enable good planning for missing data. The authors show how to handle missing data in a way that is transparent and easy to understand for clinicians, regulators and patients. New developments are presented to improve the choice and implementation of primary and sensitivity analyses for missing data. Many SAS code examples are included – the reader is given a toolbox for implementing analyses under a variety of assumptions.