Author: Andrea Vedaldi
Publisher: Springer
ISBN: 9783030586065
Category : Computers
Languages : en
Pages : 789
Book Description
The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic. The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.
Computer Vision – ECCV 2020
Author: Andrea Vedaldi
Publisher: Springer
ISBN: 9783030586065
Category : Computers
Languages : en
Pages : 789
Book Description
The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic. The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.
Publisher: Springer
ISBN: 9783030586065
Category : Computers
Languages : en
Pages : 789
Book Description
The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic. The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.
View-based 3-D Object Retrieval
Author: Yue Gao
Publisher: Morgan Kaufmann
ISBN: 0128026235
Category : Computers
Languages : en
Pages : 154
Book Description
Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging research topic. View-based 3-D Object Retrieval introduces and discusses the fundamental challenges in view-based 3-D object retrieval, proposes a collection of selected state-of-the-art methods for accomplishing this task developed by the authors, and summarizes recent achievements in view-based 3-D object retrieval. Part I presents an Introduction to View-based 3-D Object Retrieval, Part II discusses View Extraction, Selection, and Representation, Part III provides a deep dive into View-Based 3-D Object Comparison, and Part IV looks at future research and developments including Big Data application and geographical location-based applications. - Systematically introduces view-based 3-D object retrieval, including problem definitions and settings, methodologies, and benchmark testing beds - Discusses several key challenges in view-based 3-D object retrieval, and introduces the state-of-the-art solutions - Presents the progression from general image retrieval techniques to view-based 3-D object retrieval - Introduces future research efforts in the areas of Big Data, feature extraction, and geographical location-based applications
Publisher: Morgan Kaufmann
ISBN: 0128026235
Category : Computers
Languages : en
Pages : 154
Book Description
Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging research topic. View-based 3-D Object Retrieval introduces and discusses the fundamental challenges in view-based 3-D object retrieval, proposes a collection of selected state-of-the-art methods for accomplishing this task developed by the authors, and summarizes recent achievements in view-based 3-D object retrieval. Part I presents an Introduction to View-based 3-D Object Retrieval, Part II discusses View Extraction, Selection, and Representation, Part III provides a deep dive into View-Based 3-D Object Comparison, and Part IV looks at future research and developments including Big Data application and geographical location-based applications. - Systematically introduces view-based 3-D object retrieval, including problem definitions and settings, methodologies, and benchmark testing beds - Discusses several key challenges in view-based 3-D object retrieval, and introduces the state-of-the-art solutions - Presents the progression from general image retrieval techniques to view-based 3-D object retrieval - Introduces future research efforts in the areas of Big Data, feature extraction, and geographical location-based applications
Graph-Based Representations in Pattern Recognition
Author: Xiaoyi Jiang
Publisher: Springer Science & Business Media
ISBN: 3642208436
Category : Computers
Languages : en
Pages : 355
Book Description
This book constitutes the refereed proceedings of the 8th IAPR-TC-15 International Workshop on Graph-Based Representations in Pattern Recognition, GbRPR 2011, held in Münster, Germany, in May 2011. The 34 revised full papers presented were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on graph-based representation and characterization, graph matching, classification, and querying, graph-based learning, graph-based segmentation, and applications.
Publisher: Springer Science & Business Media
ISBN: 3642208436
Category : Computers
Languages : en
Pages : 355
Book Description
This book constitutes the refereed proceedings of the 8th IAPR-TC-15 International Workshop on Graph-Based Representations in Pattern Recognition, GbRPR 2011, held in Münster, Germany, in May 2011. The 34 revised full papers presented were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on graph-based representation and characterization, graph matching, classification, and querying, graph-based learning, graph-based segmentation, and applications.
Managing and Mining Graph Data
Author: Charu C. Aggarwal
Publisher: Springer Science & Business Media
ISBN: 1441960457
Category : Computers
Languages : en
Pages : 623
Book Description
Managing and Mining Graph Data is a comprehensive survey book in graph management and mining. It contains extensive surveys on a variety of important graph topics such as graph languages, indexing, clustering, data generation, pattern mining, classification, keyword search, pattern matching, and privacy. It also studies a number of domain-specific scenarios such as stream mining, web graphs, social networks, chemical and biological data. The chapters are written by well known researchers in the field, and provide a broad perspective of the area. This is the first comprehensive survey book in the emerging topic of graph data processing. Managing and Mining Graph Data is designed for a varied audience composed of professors, researchers and practitioners in industry. This volume is also suitable as a reference book for advanced-level database students in computer science and engineering.
Publisher: Springer Science & Business Media
ISBN: 1441960457
Category : Computers
Languages : en
Pages : 623
Book Description
Managing and Mining Graph Data is a comprehensive survey book in graph management and mining. It contains extensive surveys on a variety of important graph topics such as graph languages, indexing, clustering, data generation, pattern mining, classification, keyword search, pattern matching, and privacy. It also studies a number of domain-specific scenarios such as stream mining, web graphs, social networks, chemical and biological data. The chapters are written by well known researchers in the field, and provide a broad perspective of the area. This is the first comprehensive survey book in the emerging topic of graph data processing. Managing and Mining Graph Data is designed for a varied audience composed of professors, researchers and practitioners in industry. This volume is also suitable as a reference book for advanced-level database students in computer science and engineering.
Graph-Based Methods in Computer Vision: Developments and Applications
Author: Bai, Xiao
Publisher: IGI Global
ISBN: 1466618922
Category : Computers
Languages : en
Pages : 395
Book Description
Computer vision, the science and technology of machines that see, has been a rapidly developing research area since the mid-1970s. It focuses on the understanding of digital input images in many forms, including video and 3-D range data. Graph-Based Methods in Computer Vision: Developments and Applications presents a sampling of the research issues related to applying graph-based methods in computer vision. These methods have been under-utilized in the past, but use must now be increased because of their ability to naturally and effectively represent image models and data. This publication explores current activity and future applications of this fascinating and ground-breaking topic.
Publisher: IGI Global
ISBN: 1466618922
Category : Computers
Languages : en
Pages : 395
Book Description
Computer vision, the science and technology of machines that see, has been a rapidly developing research area since the mid-1970s. It focuses on the understanding of digital input images in many forms, including video and 3-D range data. Graph-Based Methods in Computer Vision: Developments and Applications presents a sampling of the research issues related to applying graph-based methods in computer vision. These methods have been under-utilized in the past, but use must now be increased because of their ability to naturally and effectively represent image models and data. This publication explores current activity and future applications of this fascinating and ground-breaking topic.
Computer Analysis of Images and Patterns
Author: Gerald Sommer
Publisher: Springer Science & Business Media
ISBN: 9783540634607
Category : Technology & Engineering
Languages : en
Pages : 760
Book Description
This book constitutes the refereed proceedings of the 7th International Conference on Computer Analysis of Images and Patterns, CAIP '97, held in Kiel, Germany, in September 1997. The volume presents 92 revised papers selected during a double-blind reviewing process from a total of 150 high-quality submissions. The papers are organized in topical sections on pattern analysis, object recognition and tracking, invariants, applications, shape, texture analysis, motion calibration, low-level processing, structure from motion, stereo and correspondence, segmentation and grouping, mathematical morphology, pose estimation, and face analysis.
Publisher: Springer Science & Business Media
ISBN: 9783540634607
Category : Technology & Engineering
Languages : en
Pages : 760
Book Description
This book constitutes the refereed proceedings of the 7th International Conference on Computer Analysis of Images and Patterns, CAIP '97, held in Kiel, Germany, in September 1997. The volume presents 92 revised papers selected during a double-blind reviewing process from a total of 150 high-quality submissions. The papers are organized in topical sections on pattern analysis, object recognition and tracking, invariants, applications, shape, texture analysis, motion calibration, low-level processing, structure from motion, stereo and correspondence, segmentation and grouping, mathematical morphology, pose estimation, and face analysis.
Computer Vision – ECCV 2022
Author: Shai Avidan
Publisher: Springer Nature
ISBN: 3031200500
Category : Computers
Languages : en
Pages : 820
Book Description
The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23–27, 2022. The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.
Publisher: Springer Nature
ISBN: 3031200500
Category : Computers
Languages : en
Pages : 820
Book Description
The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23–27, 2022. The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.
Intelligent Systems and Interfaces
Author: Horia-Nicolai Teodorescu
Publisher: Springer Science & Business Media
ISBN: 9780792377634
Category : Computers
Languages : en
Pages : 488
Book Description
This volume offers comprehensive coverage of intelligent systems, including fundamental aspects, software-, sensors-, and hardware-related issues. Moreover, the contributors to this volume provide, beyond a systematic overview of intelligent interfaces and systems, deep, practical knowledge in building and using intelligent systems in various applications. Special emphasis is placed on specific aspects and requirements in applications.
Publisher: Springer Science & Business Media
ISBN: 9780792377634
Category : Computers
Languages : en
Pages : 488
Book Description
This volume offers comprehensive coverage of intelligent systems, including fundamental aspects, software-, sensors-, and hardware-related issues. Moreover, the contributors to this volume provide, beyond a systematic overview of intelligent interfaces and systems, deep, practical knowledge in building and using intelligent systems in various applications. Special emphasis is placed on specific aspects and requirements in applications.
Graph Representation Learning
Author: William L. William L. Hamilton
Publisher: Springer Nature
ISBN: 3031015886
Category : Computers
Languages : en
Pages : 141
Book Description
Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.
Publisher: Springer Nature
ISBN: 3031015886
Category : Computers
Languages : en
Pages : 141
Book Description
Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.
Discrete Mathematics
Author: Oscar Levin
Publisher: Createspace Independent Publishing Platform
ISBN: 9781534970748
Category :
Languages : en
Pages : 342
Book Description
This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.
Publisher: Createspace Independent Publishing Platform
ISBN: 9781534970748
Category :
Languages : en
Pages : 342
Book Description
This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.