Multiobjective Evolutionary Algorithms and Applications

Multiobjective Evolutionary Algorithms and Applications PDF Author: Kay Chen Tan
Publisher: Springer Science & Business Media
ISBN: 9781852338367
Category : Computers
Languages : en
Pages : 314

Get Book Here

Book Description
Evolutionary multiobjective optimization is currently gaining a lot of attention, particularly for researchers in the evolutionary computation communities. Covers the authors’ recent research in the area of multiobjective evolutionary algorithms as well as its practical applications.

Multiobjective Evolutionary Algorithms and Applications

Multiobjective Evolutionary Algorithms and Applications PDF Author: Kay Chen Tan
Publisher: Springer Science & Business Media
ISBN: 9781852338367
Category : Computers
Languages : en
Pages : 314

Get Book Here

Book Description
Evolutionary multiobjective optimization is currently gaining a lot of attention, particularly for researchers in the evolutionary computation communities. Covers the authors’ recent research in the area of multiobjective evolutionary algorithms as well as its practical applications.

Applications of Multi-objective Evolutionary Algorithms

Applications of Multi-objective Evolutionary Algorithms PDF Author: Carlos A. Coello Coello
Publisher: World Scientific
ISBN: 9812561064
Category : Computers
Languages : en
Pages : 792

Get Book Here

Book Description
- Detailed MOEA applications discussed by international experts - State-of-the-art practical insights in tackling statistical optimization with MOEAs - A unique monograph covering a wide spectrum of real-world applications - Step-by-step discussion of MOEA applications in a variety of domains

Evolutionary Multiobjective Optimization

Evolutionary Multiobjective Optimization PDF Author: Ajith Abraham
Publisher: Springer Science & Business Media
ISBN: 1846281377
Category : Computers
Languages : en
Pages : 313

Get Book Here

Book Description
Evolutionary Multi-Objective Optimization is an expanding field of research. This book brings a collection of papers with some of the most recent advances in this field. The topic and content is currently very fashionable and has immense potential for practical applications and includes contributions from leading researchers in the field. Assembled in a compelling and well-organised fashion, Evolutionary Computation Based Multi-Criteria Optimization will prove beneficial for both academic and industrial scientists and engineers engaged in research and development and application of evolutionary algorithm based MCO. Packed with must-find information, this book is the first to comprehensively and clearly address the issue of evolutionary computation based MCO, and is an essential read for any researcher or practitioner of the technique.

Evolutionary Algorithms for Solving Multi-Objective Problems

Evolutionary Algorithms for Solving Multi-Objective Problems PDF Author: Carlos Coello Coello
Publisher: Springer Science & Business Media
ISBN: 0387367977
Category : Computers
Languages : en
Pages : 810

Get Book Here

Book Description
This textbook is a second edition of Evolutionary Algorithms for Solving Multi-Objective Problems, significantly expanded and adapted for the classroom. The various features of multi-objective evolutionary algorithms are presented here in an innovative and student-friendly fashion, incorporating state-of-the-art research. The book disseminates the application of evolutionary algorithm techniques to a variety of practical problems. It contains exhaustive appendices, index and bibliography and links to a complete set of teaching tutorials, exercises and solutions.

Multi-Objective Optimization using Evolutionary Algorithms

Multi-Objective Optimization using Evolutionary Algorithms PDF Author: Kalyanmoy Deb
Publisher: John Wiley & Sons
ISBN: 9780471873396
Category : Mathematics
Languages : en
Pages : 540

Get Book Here

Book Description
Optimierung mit mehreren Zielen, evolutionäre Algorithmen: Dieses Buch wendet sich vorrangig an Einsteiger, denn es werden kaum Vorkenntnisse vorausgesetzt. Geboten werden alle notwendigen Grundlagen, um die Theorie auf Probleme der Ingenieurtechnik, der Vorhersage und der Planung anzuwenden. Der Autor gibt auch einen Ausblick auf Forschungsaufgaben der Zukunft.

Multiobjective Problem Solving from Nature

Multiobjective Problem Solving from Nature PDF Author: Joshua Knowles
Publisher: Springer Science & Business Media
ISBN: 3540729631
Category : Computers
Languages : en
Pages : 413

Get Book Here

Book Description
This text examines how multiobjective evolutionary algorithms and related techniques can be used to solve problems, particularly in the disciplines of science and engineering. Contributions by leading researchers show how the concept of multiobjective optimization can be used to reformulate and resolve problems in areas such as constrained optimization, co-evolution, classification, inverse modeling, and design.

Advances in Evolutionary Computing

Advances in Evolutionary Computing PDF Author: Ashish Ghosh
Publisher: Springer Science & Business Media
ISBN: 3642189652
Category : Computers
Languages : en
Pages : 1001

Get Book Here

Book Description
This book provides a collection of fourty articles containing new material on both theoretical aspects of Evolutionary Computing (EC), and demonstrating the usefulness/success of it for various kinds of large-scale real world problems. Around 23 articles deal with various theoretical aspects of EC and 17 articles demonstrate the success of EC methodologies. These articles are written by leading experts of the field from different countries all over the world.

Introduction to Evolutionary Algorithms

Introduction to Evolutionary Algorithms PDF Author: Xinjie Yu
Publisher: Springer Science & Business Media
ISBN: 1849961298
Category : Computers
Languages : en
Pages : 427

Get Book Here

Book Description
Evolutionary algorithms are becoming increasingly attractive across various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science and economics. Introduction to Evolutionary Algorithms presents an insightful, comprehensive, and up-to-date treatment of evolutionary algorithms. It covers such hot topics as: • genetic algorithms, • differential evolution, • swarm intelligence, and • artificial immune systems. The reader is introduced to a range of applications, as Introduction to Evolutionary Algorithms demonstrates how to model real world problems, how to encode and decode individuals, and how to design effective search operators according to the chromosome structures with examples of constraint optimization, multiobjective optimization, combinatorial optimization, and supervised/unsupervised learning. This emphasis on practical applications will benefit all students, whether they choose to continue their academic career or to enter a particular industry. Introduction to Evolutionary Algorithms is intended as a textbook or self-study material for both advanced undergraduates and graduate students. Additional features such as recommended further reading and ideas for research projects combine to form an accessible and interesting pedagogical approach to this widely used discipline.

Metaheuristics for Multiobjective Optimisation

Metaheuristics for Multiobjective Optimisation PDF Author: Xavier Gandibleux
Publisher: Springer Science & Business Media
ISBN: 3642171443
Category : Mathematics
Languages : en
Pages : 252

Get Book Here

Book Description
The success of metaheuristics on hard single-objective optimization problems is well recognized today. However, many real-life problems require taking into account several conflicting points of view corresponding to multiple objectives. The use of metaheuristic optimization techniques for multi-objective problems is the subject of this volume. The book includes selected surveys, tutorials and state-of-the-art research papers in this field, which were first presented at a free workshop jointly organized by the French working group on Multi-objective Mathematical Programming (PM2O) and the EURO working group on Metaheuristics in December 2002. It is the first book which considers both various metaheuristics and various kind of problems (e.g. combinatorial problems, real situations, non-linear problems) applied to multiple objective optimization. Metaheuristics used include: genetic algorithms, ant colony optimization, simulated annealing, scatter search, etc. Problems concern timetabling, vehicle routing, and more. Methodological aspects, such as quality evaluation, are also covered.

Recent Advances in Evolutionary Multi-objective Optimization

Recent Advances in Evolutionary Multi-objective Optimization PDF Author: Slim Bechikh
Publisher: Springer
ISBN: 3319429787
Category : Technology & Engineering
Languages : en
Pages : 187

Get Book Here

Book Description
This book covers the most recent advances in the field of evolutionary multiobjective optimization. With the aim of drawing the attention of up-and coming scientists towards exciting prospects at the forefront of computational intelligence, the authors have made an effort to ensure that the ideas conveyed herein are accessible to the widest audience. The book begins with a summary of the basic concepts in multi-objective optimization. This is followed by brief discussions on various algorithms that have been proposed over the years for solving such problems, ranging from classical (mathematical) approaches to sophisticated evolutionary ones that are capable of seamlessly tackling practical challenges such as non-convexity, multi-modality, the presence of multiple constraints, etc. Thereafter, some of the key emerging aspects that are likely to shape future research directions in the field are presented. These include: optimization in dynamic environments, multi-objective bilevel programming, handling high dimensionality under many objectives, and evolutionary multitasking. In addition to theory and methodology, this book describes several real-world applications from various domains, which will expose the readers to the versatility of evolutionary multi-objective optimization.