Author: Michael Ying Yang
Publisher: Academic Press
ISBN: 0128173599
Category : Technology & Engineering
Languages : en
Pages : 424
Book Description
Multimodal Scene Understanding: Algorithms, Applications and Deep Learning presents recent advances in multi-modal computing, with a focus on computer vision and photogrammetry. It provides the latest algorithms and applications that involve combining multiple sources of information and describes the role and approaches of multi-sensory data and multi-modal deep learning. The book is ideal for researchers from the fields of computer vision, remote sensing, robotics, and photogrammetry, thus helping foster interdisciplinary interaction and collaboration between these realms. Researchers collecting and analyzing multi-sensory data collections – for example, KITTI benchmark (stereo+laser) - from different platforms, such as autonomous vehicles, surveillance cameras, UAVs, planes and satellites will find this book to be very useful. - Contains state-of-the-art developments on multi-modal computing - Shines a focus on algorithms and applications - Presents novel deep learning topics on multi-sensor fusion and multi-modal deep learning
Multimodal Scene Understanding
Author: Michael Ying Yang
Publisher: Academic Press
ISBN: 0128173599
Category : Technology & Engineering
Languages : en
Pages : 424
Book Description
Multimodal Scene Understanding: Algorithms, Applications and Deep Learning presents recent advances in multi-modal computing, with a focus on computer vision and photogrammetry. It provides the latest algorithms and applications that involve combining multiple sources of information and describes the role and approaches of multi-sensory data and multi-modal deep learning. The book is ideal for researchers from the fields of computer vision, remote sensing, robotics, and photogrammetry, thus helping foster interdisciplinary interaction and collaboration between these realms. Researchers collecting and analyzing multi-sensory data collections – for example, KITTI benchmark (stereo+laser) - from different platforms, such as autonomous vehicles, surveillance cameras, UAVs, planes and satellites will find this book to be very useful. - Contains state-of-the-art developments on multi-modal computing - Shines a focus on algorithms and applications - Presents novel deep learning topics on multi-sensor fusion and multi-modal deep learning
Publisher: Academic Press
ISBN: 0128173599
Category : Technology & Engineering
Languages : en
Pages : 424
Book Description
Multimodal Scene Understanding: Algorithms, Applications and Deep Learning presents recent advances in multi-modal computing, with a focus on computer vision and photogrammetry. It provides the latest algorithms and applications that involve combining multiple sources of information and describes the role and approaches of multi-sensory data and multi-modal deep learning. The book is ideal for researchers from the fields of computer vision, remote sensing, robotics, and photogrammetry, thus helping foster interdisciplinary interaction and collaboration between these realms. Researchers collecting and analyzing multi-sensory data collections – for example, KITTI benchmark (stereo+laser) - from different platforms, such as autonomous vehicles, surveillance cameras, UAVs, planes and satellites will find this book to be very useful. - Contains state-of-the-art developments on multi-modal computing - Shines a focus on algorithms and applications - Presents novel deep learning topics on multi-sensor fusion and multi-modal deep learning
Multimodal Computational Attention for Scene Understanding and Robotics
Author: Boris Schauerte
Publisher: Springer
ISBN: 3319337963
Category : Technology & Engineering
Languages : en
Pages : 220
Book Description
This book presents state-of-the-art computational attention models that have been successfully tested in diverse application areas and can build the foundation for artificial systems to efficiently explore, analyze, and understand natural scenes. It gives a comprehensive overview of the most recent computational attention models for processing visual and acoustic input. It covers the biological background of visual and auditory attention, as well as bottom-up and top-down attentional mechanisms and discusses various applications. In the first part new approaches for bottom-up visual and acoustic saliency models are presented and applied to the task of audio-visual scene exploration of a robot. In the second part the influence of top-down cues for attention modeling is investigated.
Publisher: Springer
ISBN: 3319337963
Category : Technology & Engineering
Languages : en
Pages : 220
Book Description
This book presents state-of-the-art computational attention models that have been successfully tested in diverse application areas and can build the foundation for artificial systems to efficiently explore, analyze, and understand natural scenes. It gives a comprehensive overview of the most recent computational attention models for processing visual and acoustic input. It covers the biological background of visual and auditory attention, as well as bottom-up and top-down attentional mechanisms and discusses various applications. In the first part new approaches for bottom-up visual and acoustic saliency models are presented and applied to the task of audio-visual scene exploration of a robot. In the second part the influence of top-down cues for attention modeling is investigated.
2016 International Symposium on Experimental Robotics
Author: Dana Kulić
Publisher: Springer
ISBN: 3319501151
Category : Technology & Engineering
Languages : en
Pages : 858
Book Description
Experimental Robotics XV is the collection of papers presented at the International Symposium on Experimental Robotics, Roppongi, Tokyo, Japan on October 3-6, 2016. 73 scientific papers were selected and presented after peer review. The papers span a broad range of sub-fields in robotics including aerial robots, mobile robots, actuation, grasping, manipulation, planning and control and human-robot interaction, but shared cutting-edge approaches and paradigms to experimental robotics. The readers will find a breadth of new directions of experimental robotics. The International Symposium on Experimental Robotics is a series of bi-annual symposia sponsored by the International Foundation of Robotics Research, whose goal is to provide a forum dedicated to experimental robotics research. Robotics has been widening its scientific scope, deepening its methodologies and expanding its applications. However, the significance of experiments remains and will remain at the center of the discipline. The ISER gatherings are a venue where scientists can gather and talk about robotics based on this central tenet.
Publisher: Springer
ISBN: 3319501151
Category : Technology & Engineering
Languages : en
Pages : 858
Book Description
Experimental Robotics XV is the collection of papers presented at the International Symposium on Experimental Robotics, Roppongi, Tokyo, Japan on October 3-6, 2016. 73 scientific papers were selected and presented after peer review. The papers span a broad range of sub-fields in robotics including aerial robots, mobile robots, actuation, grasping, manipulation, planning and control and human-robot interaction, but shared cutting-edge approaches and paradigms to experimental robotics. The readers will find a breadth of new directions of experimental robotics. The International Symposium on Experimental Robotics is a series of bi-annual symposia sponsored by the International Foundation of Robotics Research, whose goal is to provide a forum dedicated to experimental robotics research. Robotics has been widening its scientific scope, deepening its methodologies and expanding its applications. However, the significance of experiments remains and will remain at the center of the discipline. The ISER gatherings are a venue where scientists can gather and talk about robotics based on this central tenet.
Multimodal Behavior Analysis in the Wild
Author: Xavier Alameda-Pineda
Publisher: Academic Press
ISBN: 0128146028
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
Multimodal Behavioral Analysis in the Wild: Advances and Challenges presents the state-of- the-art in behavioral signal processing using different data modalities, with a special focus on identifying the strengths and limitations of current technologies. The book focuses on audio and video modalities, while also emphasizing emerging modalities, such as accelerometer or proximity data. It covers tasks at different levels of complexity, from low level (speaker detection, sensorimotor links, source separation), through middle level (conversational group detection, addresser and addressee identification), and high level (personality and emotion recognition), providing insights on how to exploit inter-level and intra-level links. This is a valuable resource on the state-of-the- art and future research challenges of multi-modal behavioral analysis in the wild. It is suitable for researchers and graduate students in the fields of computer vision, audio processing, pattern recognition, machine learning and social signal processing. - Gives a comprehensive collection of information on the state-of-the-art, limitations, and challenges associated with extracting behavioral cues from real-world scenarios - Presents numerous applications on how different behavioral cues have been successfully extracted from different data sources - Provides a wide variety of methodologies used to extract behavioral cues from multi-modal data
Publisher: Academic Press
ISBN: 0128146028
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
Multimodal Behavioral Analysis in the Wild: Advances and Challenges presents the state-of- the-art in behavioral signal processing using different data modalities, with a special focus on identifying the strengths and limitations of current technologies. The book focuses on audio and video modalities, while also emphasizing emerging modalities, such as accelerometer or proximity data. It covers tasks at different levels of complexity, from low level (speaker detection, sensorimotor links, source separation), through middle level (conversational group detection, addresser and addressee identification), and high level (personality and emotion recognition), providing insights on how to exploit inter-level and intra-level links. This is a valuable resource on the state-of-the- art and future research challenges of multi-modal behavioral analysis in the wild. It is suitable for researchers and graduate students in the fields of computer vision, audio processing, pattern recognition, machine learning and social signal processing. - Gives a comprehensive collection of information on the state-of-the-art, limitations, and challenges associated with extracting behavioral cues from real-world scenarios - Presents numerous applications on how different behavioral cues have been successfully extracted from different data sources - Provides a wide variety of methodologies used to extract behavioral cues from multi-modal data
Handbook of Deep Learning Applications
Author: Valentina Emilia Balas
Publisher: Springer
ISBN: 3030114791
Category : Technology & Engineering
Languages : en
Pages : 380
Book Description
This book presents a broad range of deep-learning applications related to vision, natural language processing, gene expression, arbitrary object recognition, driverless cars, semantic image segmentation, deep visual residual abstraction, brain–computer interfaces, big data processing, hierarchical deep learning networks as game-playing artefacts using regret matching, and building GPU-accelerated deep learning frameworks. Deep learning, an advanced level of machine learning technique that combines class of learning algorithms with the use of many layers of nonlinear units, has gained considerable attention in recent times. Unlike other books on the market, this volume addresses the challenges of deep learning implementation, computation time, and the complexity of reasoning and modeling different type of data. As such, it is a valuable and comprehensive resource for engineers, researchers, graduate students and Ph.D. scholars.
Publisher: Springer
ISBN: 3030114791
Category : Technology & Engineering
Languages : en
Pages : 380
Book Description
This book presents a broad range of deep-learning applications related to vision, natural language processing, gene expression, arbitrary object recognition, driverless cars, semantic image segmentation, deep visual residual abstraction, brain–computer interfaces, big data processing, hierarchical deep learning networks as game-playing artefacts using regret matching, and building GPU-accelerated deep learning frameworks. Deep learning, an advanced level of machine learning technique that combines class of learning algorithms with the use of many layers of nonlinear units, has gained considerable attention in recent times. Unlike other books on the market, this volume addresses the challenges of deep learning implementation, computation time, and the complexity of reasoning and modeling different type of data. As such, it is a valuable and comprehensive resource for engineers, researchers, graduate students and Ph.D. scholars.
Multimodality
Author: Janina Wildfeuer
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110608057
Category : Language Arts & Disciplines
Languages : en
Pages : 357
Book Description
Multimodality’s popularity as a semiotic approach has not resulted in a common voice yet. Its conceptual anchoring as well as its empirical applications often remain localized and disparate, and ideas of a theory of multimodality are heterogeneous and uncoordinated. For the field to move ahead, it must achieve a more mature status of reflection, mutual support, and interaction with regard to both past and future directions. The red thread across the disciplines reflected in this book is a common goal of capturing the mechanisms of synergetic knowledge construction and transmission using diverse forms of expressions, i.e., multimodality. The collection of chapters brought together in the book reflects both a diversity of disciplines and common interests and challenges, thereby establishing an excellent roadmap for the future. The contributions revisit and redefine theoretical concepts or empirical analyses, which are crucial to the study of multimodality from various perspectives, with a view towards evolving issues of multimodal analysis. With this, the book aims at repositioning the field as a well-grounded scientific discipline with significant implications for future communication research in many fields of study.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110608057
Category : Language Arts & Disciplines
Languages : en
Pages : 357
Book Description
Multimodality’s popularity as a semiotic approach has not resulted in a common voice yet. Its conceptual anchoring as well as its empirical applications often remain localized and disparate, and ideas of a theory of multimodality are heterogeneous and uncoordinated. For the field to move ahead, it must achieve a more mature status of reflection, mutual support, and interaction with regard to both past and future directions. The red thread across the disciplines reflected in this book is a common goal of capturing the mechanisms of synergetic knowledge construction and transmission using diverse forms of expressions, i.e., multimodality. The collection of chapters brought together in the book reflects both a diversity of disciplines and common interests and challenges, thereby establishing an excellent roadmap for the future. The contributions revisit and redefine theoretical concepts or empirical analyses, which are crucial to the study of multimodality from various perspectives, with a view towards evolving issues of multimodal analysis. With this, the book aims at repositioning the field as a well-grounded scientific discipline with significant implications for future communication research in many fields of study.
Multimodal Metaphor
Author: Charles Forceville
Publisher: Walter de Gruyter
ISBN: 3110205157
Category : Language Arts & Disciplines
Languages : en
Pages : 487
Book Description
Metaphor pervades discourse and may govern how we think and act. But most studies only discuss its verbal varieties. This book examines metaphors drawing on combinations of visuals, language, gestures, sound, and music. Investigated texts include ad
Publisher: Walter de Gruyter
ISBN: 3110205157
Category : Language Arts & Disciplines
Languages : en
Pages : 487
Book Description
Metaphor pervades discourse and may govern how we think and act. But most studies only discuss its verbal varieties. This book examines metaphors drawing on combinations of visuals, language, gestures, sound, and music. Investigated texts include ad
Proceedings of the 9th International Conference on Engineering Management and the 2nd Forum on Modern Logistics and Supply Chain Management (ICEM-MLSCM 2024)
Author: Colin W. K. Chen
Publisher: Springer Nature
ISBN: 9464635312
Category : Electronic books
Languages : en
Pages : 285
Book Description
Publisher: Springer Nature
ISBN: 9464635312
Category : Electronic books
Languages : en
Pages : 285
Book Description
Frontiers of Multimedia Research
Author: Shih-Fu Chang
Publisher: Morgan & Claypool
ISBN: 1970001062
Category : Computers
Languages : en
Pages : 492
Book Description
The field of multimedia is unique in offering a rich and dynamic forum for researchers from “traditional” fields to collaborate and develop new solutions and knowledge that transcend the boundaries of individual disciplines. Despite the prolific research activities and outcomes, however, few efforts have been made to develop books that serve as an introduction to the rich spectrum of topics covered by this broad field. A few books are available that either focus on specific subfields or basic background in multimedia. Tutorial-style materials covering the active topics being pursued by the leading researchers at frontiers of the field are currently lacking. In 2015, ACM SIGMM, the special interest group on multimedia, launched a new initiative to address this void by selecting and inviting 12 rising-star speakers from different subfields of multimedia research to deliver plenary tutorial-style talks at the ACM Multimedia conference for 2015. Each speaker discussed the challenges and state-of-the-art developments of their prospective research areas in a general manner to the broad community. The covered topics were comprehensive, including multimedia content understanding, multimodal human-human and human-computer interaction, multimedia social media, and multimedia system architecture and deployment. Following the very positive responses to these talks, the speakers were invited to expand the content covered in their talks into chapters that can be used as reference material for researchers, students, and practitioners. Each chapter discusses the problems, technical challenges, state-of-the-art approaches and performances, open issues, and promising direction for future work. Collectively, the chapters provide an excellent sampling of major topics addressed by the community as a whole. This book, capturing some of the outcomes of such efforts, is well positioned to fill the aforementioned needs in providing tutorial-style reference materials for frontier topics in multimedia. At the same time, the speed and sophistication required of data processing have grown. In addition to simple queries, complex algorithms like machine learning and graph analysis are becoming common. And in addition to batch processing, streaming analysis of real-time data is required to let organizations take timely action. Future computing platforms will need to not only scale out traditional workloads, but support these new applications too. This book, a revised version of the 2014 ACM Dissertation Award winning dissertation, proposes an architecture for cluster computing systems that can tackle emerging data processing workloads at scale. Whereas early cluster computing systems, like MapReduce, handled batch processing, our architecture also enables streaming and interactive queries, while keeping MapReduce's scalability and fault tolerance. And whereas most deployed systems only support simple one-pass computations (e.g., SQL queries), ours also extends to the multi-pass algorithms required for complex analytics like machine learning. Finally, unlike the specialized systems proposed for some of these workloads, our architecture allows these computations to be combined, enabling rich new applications that intermix, for example, streaming and batch processing. We achieve these results through a simple extension to MapReduce that adds primitives for data sharing, called Resilient Distributed Datasets (RDDs). We show that this is enough to capture a wide range of workloads. We implement RDDs in the open source Spark system, which we evaluate using synthetic and real workloads. Spark matches or exceeds the performance of specialized systems in many domains, while offering stronger fault tolerance properties and allowing these workloads to be combined. Finally, we examine the generality of RDDs from both a theoretical modeling perspective and a systems perspective. This version of the dissertation makes corrections throughout the text and adds a new section on the evolution of Apache Spark in industry since 2014. In addition, editing, formatting, and links for the references have been added.
Publisher: Morgan & Claypool
ISBN: 1970001062
Category : Computers
Languages : en
Pages : 492
Book Description
The field of multimedia is unique in offering a rich and dynamic forum for researchers from “traditional” fields to collaborate and develop new solutions and knowledge that transcend the boundaries of individual disciplines. Despite the prolific research activities and outcomes, however, few efforts have been made to develop books that serve as an introduction to the rich spectrum of topics covered by this broad field. A few books are available that either focus on specific subfields or basic background in multimedia. Tutorial-style materials covering the active topics being pursued by the leading researchers at frontiers of the field are currently lacking. In 2015, ACM SIGMM, the special interest group on multimedia, launched a new initiative to address this void by selecting and inviting 12 rising-star speakers from different subfields of multimedia research to deliver plenary tutorial-style talks at the ACM Multimedia conference for 2015. Each speaker discussed the challenges and state-of-the-art developments of their prospective research areas in a general manner to the broad community. The covered topics were comprehensive, including multimedia content understanding, multimodal human-human and human-computer interaction, multimedia social media, and multimedia system architecture and deployment. Following the very positive responses to these talks, the speakers were invited to expand the content covered in their talks into chapters that can be used as reference material for researchers, students, and practitioners. Each chapter discusses the problems, technical challenges, state-of-the-art approaches and performances, open issues, and promising direction for future work. Collectively, the chapters provide an excellent sampling of major topics addressed by the community as a whole. This book, capturing some of the outcomes of such efforts, is well positioned to fill the aforementioned needs in providing tutorial-style reference materials for frontier topics in multimedia. At the same time, the speed and sophistication required of data processing have grown. In addition to simple queries, complex algorithms like machine learning and graph analysis are becoming common. And in addition to batch processing, streaming analysis of real-time data is required to let organizations take timely action. Future computing platforms will need to not only scale out traditional workloads, but support these new applications too. This book, a revised version of the 2014 ACM Dissertation Award winning dissertation, proposes an architecture for cluster computing systems that can tackle emerging data processing workloads at scale. Whereas early cluster computing systems, like MapReduce, handled batch processing, our architecture also enables streaming and interactive queries, while keeping MapReduce's scalability and fault tolerance. And whereas most deployed systems only support simple one-pass computations (e.g., SQL queries), ours also extends to the multi-pass algorithms required for complex analytics like machine learning. Finally, unlike the specialized systems proposed for some of these workloads, our architecture allows these computations to be combined, enabling rich new applications that intermix, for example, streaming and batch processing. We achieve these results through a simple extension to MapReduce that adds primitives for data sharing, called Resilient Distributed Datasets (RDDs). We show that this is enough to capture a wide range of workloads. We implement RDDs in the open source Spark system, which we evaluate using synthetic and real workloads. Spark matches or exceeds the performance of specialized systems in many domains, while offering stronger fault tolerance properties and allowing these workloads to be combined. Finally, we examine the generality of RDDs from both a theoretical modeling perspective and a systems perspective. This version of the dissertation makes corrections throughout the text and adds a new section on the evolution of Apache Spark in industry since 2014. In addition, editing, formatting, and links for the references have been added.
Machine Learning in Computer Vision
Author: Nicu Sebe
Publisher: Springer Science & Business Media
ISBN: 1402032757
Category : Computers
Languages : en
Pages : 253
Book Description
The goal of this book is to address the use of several important machine learning techniques into computer vision applications. An innovative combination of computer vision and machine learning techniques has the promise of advancing the field of computer vision, which contributes to better understanding of complex real-world applications. The effective usage of machine learning technology in real-world computer vision problems requires understanding the domain of application, abstraction of a learning problem from a given computer vision task, and the selection of appropriate representations for the learnable (input) and learned (internal) entities of the system. In this book, we address all these important aspects from a new perspective: that the key element in the current computer revolution is the use of machine learning to capture the variations in visual appearance, rather than having the designer of the model accomplish this. As a bonus, models learned from large datasets are likely to be more robust and more realistic than the brittle all-design models.
Publisher: Springer Science & Business Media
ISBN: 1402032757
Category : Computers
Languages : en
Pages : 253
Book Description
The goal of this book is to address the use of several important machine learning techniques into computer vision applications. An innovative combination of computer vision and machine learning techniques has the promise of advancing the field of computer vision, which contributes to better understanding of complex real-world applications. The effective usage of machine learning technology in real-world computer vision problems requires understanding the domain of application, abstraction of a learning problem from a given computer vision task, and the selection of appropriate representations for the learnable (input) and learned (internal) entities of the system. In this book, we address all these important aspects from a new perspective: that the key element in the current computer revolution is the use of machine learning to capture the variations in visual appearance, rather than having the designer of the model accomplish this. As a bonus, models learned from large datasets are likely to be more robust and more realistic than the brittle all-design models.