Multilinear Subspace Learning

Multilinear Subspace Learning PDF Author: Haiping Lu
Publisher: CRC Press
ISBN: 1439857296
Category : Computers
Languages : en
Pages : 293

Get Book Here

Book Description
Due to advances in sensor, storage, and networking technologies, data is being generated on a daily basis at an ever-increasing pace in a wide range of applications, including cloud computing, mobile Internet, and medical imaging. This large multidimensional data requires more efficient dimensionality reduction schemes than the traditional techniqu

Multilinear Subspace Learning

Multilinear Subspace Learning PDF Author: Haiping Lu
Publisher: CRC Press
ISBN: 1439857296
Category : Computers
Languages : en
Pages : 293

Get Book Here

Book Description
Due to advances in sensor, storage, and networking technologies, data is being generated on a daily basis at an ever-increasing pace in a wide range of applications, including cloud computing, mobile Internet, and medical imaging. This large multidimensional data requires more efficient dimensionality reduction schemes than the traditional techniqu

Principles of Machine Learning

Principles of Machine Learning PDF Author: Wenmin Wang
Publisher: Springer Nature
ISBN: 9819753333
Category :
Languages : en
Pages : 548

Get Book Here

Book Description


Advanced Signal Processing

Advanced Signal Processing PDF Author: Stergios Stergiopoulos
Publisher: CRC Press
ISBN: 1420062417
Category : Technology & Engineering
Languages : en
Pages : 750

Get Book Here

Book Description
Discover the Applicability, Benefits, and Potential of New Technologies As advances in algorithms and computer technology have bolstered the digital signal processing capabilities of real-time sonar, radar, and non-invasive medical diagnostics systems, cutting-edge military and defense research has established conceptual similarities in these areas. Now civilian enterprises can use government innovations to facilitate optimal functionality of complex real-time systems. Advanced Signal Processing details a cost-efficient generic processing structure that exploits these commonalities to benefit commercial applications. Learn from a Renowned Defense Scientist, Researcher, and Innovator The author preserves the mathematical focus and key information from the first edition that provided invaluable coverage of topics including adaptive systems, advanced beamformers, and volume visualization methods in medicine. Integrating the best features of non-linear and conventional algorithms and explaining their application in PC-based architectures, this text contains new data on: Advances in biometrics, image segmentation, registration, and fusion techniques for 3D/4D ultrasound, CT, and MRI Fully digital 3D/ (4D: 3D+time) ultrasound system technology, computing architecture requirements, and relevant implementation issues State-of-the-art non-invasive medical procedures, non-destructive 3D tomography imaging and biometrics, and monitoring of vital signs Cardiac motion correction in multi-slice X-ray CT imaging Space-time adaptive processing and detection of targets interference-intense backgrounds comprised of clutter and jamming With its detailed explanation of adaptive, synthetic-aperture, and fusion-processing schemes with near-instantaneous convergence in 2-D and 3-D sensors (including planar, circular, cylindrical, and spherical arrays), the quality and illustration of this text’s concepts and techniques will make it a favored reference.

Machine Learning and Knowledge Discovery in Databases

Machine Learning and Knowledge Discovery in Databases PDF Author: Hendrik Blockeel
Publisher: Springer
ISBN: 3642409911
Category : Computers
Languages : en
Pages : 732

Get Book Here

Book Description
This three-volume set LNAI 8188, 8189 and 8190 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2013, held in Prague, Czech Republic, in September 2013. The 111 revised research papers presented together with 5 invited talks were carefully reviewed and selected from 447 submissions. The papers are organized in topical sections on reinforcement learning; Markov decision processes; active learning and optimization; learning from sequences; time series and spatio-temporal data; data streams; graphs and networks; social network analysis; natural language processing and information extraction; ranking and recommender systems; matrix and tensor analysis; structured output prediction, multi-label and multi-task learning; transfer learning; bayesian learning; graphical models; nearest-neighbor methods; ensembles; statistical learning; semi-supervised learning; unsupervised learning; subgroup discovery, outlier detection and anomaly detection; privacy and security; evaluation; applications; and medical applications.

Computer Vision – ACCV 2016 Workshops

Computer Vision – ACCV 2016 Workshops PDF Author: Chu-Song Chen
Publisher: Springer
ISBN: 3319545264
Category : Computers
Languages : en
Pages : 666

Get Book Here

Book Description
The three-volume set, consisting of LNCS 10116, 10117, and 10118, contains carefully reviewed and selected papers presented at 17 workshops held in conjunction with the 13th Asian Conference on Computer Vision, ACCV 2016, in Taipei, Taiwan in November 2016. The 134 full papers presented were selected from 223 submissions. LNCS 10116 contains the papers selected

ECAI 2014

ECAI 2014 PDF Author: T. Schaub
Publisher: IOS Press
ISBN: 1614994196
Category : Computers
Languages : en
Pages : 1264

Get Book Here

Book Description
The role of artificial intelligence (AI) applications in fields as diverse as medicine, economics, linguistics, logical analysis and industry continues to grow in scope and importance. AI has become integral to the effective functioning of much of the technical infrastructure we all now take for granted as part of our daily lives. This book presents the papers from the 21st biennial European Conference on Artificial Intelligence, ECAI 2014, held in Prague, Czech Republic, in August 2014. The ECAI conference remains Europe's principal opportunity for researchers and practitioners of Artificial Intelligence to gather and to discuss the latest trends and challenges in all subfields of AI, as well as to demonstrate innovative applications and uses of advanced AI technology. Included here are the 158 long papers and 94 short papers selected for presentation at the conference. Many of the papers cover the fields of knowledge representation, reasoning and logic as well as agent-based and multi-agent systems, machine learning, and data mining. The proceedings of PAIS 2014 and the PAIS System Demonstrations are also included in this volume, which will be of interest to all those wishing to keep abreast of the latest developments in the field of AI.

Neural Networks and Statistical Learning

Neural Networks and Statistical Learning PDF Author: Ke-Lin Du
Publisher: Springer Nature
ISBN: 1447174526
Category : Mathematics
Languages : en
Pages : 996

Get Book Here

Book Description
This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includes six new chapters that correspond to the recent advances in computational learning theory, sparse coding, deep learning, big data and cloud computing. Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include: • multilayer perceptron; • the Hopfield network; • associative memory models;• clustering models and algorithms; • t he radial basis function network; • recurrent neural networks; • nonnegative matrix factorization; • independent component analysis; •probabilistic and Bayesian networks; and • fuzzy sets and logic. Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning.

Handbook of Robust Low-Rank and Sparse Matrix Decomposition

Handbook of Robust Low-Rank and Sparse Matrix Decomposition PDF Author: Thierry Bouwmans
Publisher: CRC Press
ISBN: 1315353539
Category : Computers
Languages : en
Pages : 510

Get Book Here

Book Description
Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing shows you how robust subspace learning and tracking by decomposition into low-rank and sparse matrices provide a suitable framework for computer vision applications. Incorporating both existing and new ideas, the book conveniently gives you one-stop access to a number of different decompositions, algorithms, implementations, and benchmarking techniques. Divided into five parts, the book begins with an overall introduction to robust principal component analysis (PCA) via decomposition into low-rank and sparse matrices. The second part addresses robust matrix factorization/completion problems while the third part focuses on robust online subspace estimation, learning, and tracking. Covering applications in image and video processing, the fourth part discusses image analysis, image denoising, motion saliency detection, video coding, key frame extraction, and hyperspectral video processing. The final part presents resources and applications in background/foreground separation for video surveillance. With contributions from leading teams around the world, this handbook provides a complete overview of the concepts, theories, algorithms, and applications related to robust low-rank and sparse matrix decompositions. It is designed for researchers, developers, and graduate students in computer vision, image and video processing, real-time architecture, machine learning, and data mining.

Feature Learning and Understanding

Feature Learning and Understanding PDF Author: Haitao Zhao
Publisher: Springer Nature
ISBN: 3030407942
Category : Science
Languages : en
Pages : 299

Get Book Here

Book Description
This book covers the essential concepts and strategies within traditional and cutting-edge feature learning methods thru both theoretical analysis and case studies. Good features give good models and it is usually not classifiers but features that determine the effectiveness of a model. In this book, readers can find not only traditional feature learning methods, such as principal component analysis, linear discriminant analysis, and geometrical-structure-based methods, but also advanced feature learning methods, such as sparse learning, low-rank decomposition, tensor-based feature extraction, and deep-learning-based feature learning. Each feature learning method has its own dedicated chapter that explains how it is theoretically derived and shows how it is implemented for real-world applications. Detailed illustrated figures are included for better understanding. This book can be used by students, researchers, and engineers looking for a reference guide for popular methods of feature learning and machine intelligence.

Computer Analysis of Images and Patterns

Computer Analysis of Images and Patterns PDF Author: Michael Felsberg
Publisher: Springer
ISBN: 3319646893
Category : Computers
Languages : en
Pages : 417

Get Book Here

Book Description
The two volume set LNCS 10424 and 10425 constitutes the refereed proceedings of the 17th International Conference on Computer Analysis of Images and Patterns, CAIP 2017, held in Ystad, Sweden, in August 2017. The 72 papers presented were carefully reviewed and selected from 144 submissions The papers are organized in the following topical sections: Vision for Robotics; Motion and Tracking; Segmentation; Image/Video Indexing and Retrieval; Shape Representation and Analysis; Biomedical Image Analysis; Biometrics; Machine Learning; Image Restoration; and Poster Sessions.