Author: Stephen F. McCormick
Publisher: SIAM
ISBN: 1611970091
Category : Mathematics
Languages : en
Pages : 118
Book Description
The multilevel projection method is a new formalism that provides a framework for the development of multilevel algorithms in a very general setting. This methodology guides the choices of all the major multilevel processes, including relaxation and coarsening, and it applies directly to global or locally-refined discretizations. This book was developed from lectures at the CBMS-NSF Regional Conference on Multigrid and Multilevel Adaptive Methods for Partial Differential Equations in June 1991, and is a supplement to Multilevel Adaptive Methods for Partial Differential Equations, also written by Stephen F. McCormick.
Multilevel Projection Methods for Partial Differential Equations
Author: Stephen F. McCormick
Publisher: SIAM
ISBN: 1611970091
Category : Mathematics
Languages : en
Pages : 118
Book Description
The multilevel projection method is a new formalism that provides a framework for the development of multilevel algorithms in a very general setting. This methodology guides the choices of all the major multilevel processes, including relaxation and coarsening, and it applies directly to global or locally-refined discretizations. This book was developed from lectures at the CBMS-NSF Regional Conference on Multigrid and Multilevel Adaptive Methods for Partial Differential Equations in June 1991, and is a supplement to Multilevel Adaptive Methods for Partial Differential Equations, also written by Stephen F. McCormick.
Publisher: SIAM
ISBN: 1611970091
Category : Mathematics
Languages : en
Pages : 118
Book Description
The multilevel projection method is a new formalism that provides a framework for the development of multilevel algorithms in a very general setting. This methodology guides the choices of all the major multilevel processes, including relaxation and coarsening, and it applies directly to global or locally-refined discretizations. This book was developed from lectures at the CBMS-NSF Regional Conference on Multigrid and Multilevel Adaptive Methods for Partial Differential Equations in June 1991, and is a supplement to Multilevel Adaptive Methods for Partial Differential Equations, also written by Stephen F. McCormick.
Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters
Author: H.G. Kaper
Publisher: Springer Science & Business Media
ISBN: 9401118108
Category : Mathematics
Languages : en
Pages : 371
Book Description
This volume contains the proceedings of the NATO Advanced Research Workshop on "Asymptotic-induced Numerical Methods for Partial Differ ential Equations, Critical Parameters, and Domain Decomposition," held at Beaune (France), May 25-28, 1992. The purpose of the workshop was to stimulate the integration of asymp totic analysis, domain decomposition methods, and symbolic manipulation tools for the numerical solution of partial differential equations (PDEs) with critical parameters. A workshop on the same topic was held at Argonne Na tional Laboratory in February 1990. (The proceedings were published under the title Asymptotic Analysis and the Numerical Solu.tion of Partial Differ ential Equations, Hans G. Kaper and Marc Garbey, eds., Lecture Notes in Pure and Applied Mathematics. Vol. 130, ·Marcel Dekker, Inc., New York, 1991.) In a sense, the present proceedings represent a progress report on the topic area. Comparing the two sets of proceedings, we see an increase in the quantity as well as the quality of the contributions. 110re research is being done in the topic area, and the interest covers serious, nontrivial problems. We are pleased with this outcome and expect to see even more advances in the next few years as the field progresses.
Publisher: Springer Science & Business Media
ISBN: 9401118108
Category : Mathematics
Languages : en
Pages : 371
Book Description
This volume contains the proceedings of the NATO Advanced Research Workshop on "Asymptotic-induced Numerical Methods for Partial Differ ential Equations, Critical Parameters, and Domain Decomposition," held at Beaune (France), May 25-28, 1992. The purpose of the workshop was to stimulate the integration of asymp totic analysis, domain decomposition methods, and symbolic manipulation tools for the numerical solution of partial differential equations (PDEs) with critical parameters. A workshop on the same topic was held at Argonne Na tional Laboratory in February 1990. (The proceedings were published under the title Asymptotic Analysis and the Numerical Solu.tion of Partial Differ ential Equations, Hans G. Kaper and Marc Garbey, eds., Lecture Notes in Pure and Applied Mathematics. Vol. 130, ·Marcel Dekker, Inc., New York, 1991.) In a sense, the present proceedings represent a progress report on the topic area. Comparing the two sets of proceedings, we see an increase in the quantity as well as the quality of the contributions. 110re research is being done in the topic area, and the interest covers serious, nontrivial problems. We are pleased with this outcome and expect to see even more advances in the next few years as the field progresses.
Adaptive Numerical Solution of PDEs
Author: Peter Deuflhard
Publisher: Walter de Gruyter
ISBN: 3110283115
Category : Mathematics
Languages : en
Pages : 436
Book Description
This book deals with the general topic “Numerical solution of partial differential equations (PDEs)” with a focus on adaptivity of discretizations in space and time. By and large, introductory textbooks like “Numerical Analysis in Modern Scientific Computing” by Deuflhard and Hohmann should suffice as a prerequisite. The emphasis lies on elliptic and parabolic systems. Hyperbolic conservation laws are treated only on an elementary level excluding turbulence. Numerical Analysis is clearly understood as part of Scientific Computing. The focus is on the efficiency of algorithms, i.e. speed, reliability, and robustness, which directly leads to the concept of adaptivity in algorithms. The theoretical derivation and analysis is kept as elementary as possible. Nevertheless required somewhat more sophisticated mathematical theory is summarized in comprehensive form in an appendix. Complex relations are explained by numerous figures and illustrating examples. Non-trivial problems from regenerative energy, nanotechnology, surgery, and physiology are inserted. The text will appeal to graduate students and researchers on the job in mathematics, science, and technology. Conceptually, it has been written as a textbook including exercises and a software list, but at the same time it should be well-suited for self-study.
Publisher: Walter de Gruyter
ISBN: 3110283115
Category : Mathematics
Languages : en
Pages : 436
Book Description
This book deals with the general topic “Numerical solution of partial differential equations (PDEs)” with a focus on adaptivity of discretizations in space and time. By and large, introductory textbooks like “Numerical Analysis in Modern Scientific Computing” by Deuflhard and Hohmann should suffice as a prerequisite. The emphasis lies on elliptic and parabolic systems. Hyperbolic conservation laws are treated only on an elementary level excluding turbulence. Numerical Analysis is clearly understood as part of Scientific Computing. The focus is on the efficiency of algorithms, i.e. speed, reliability, and robustness, which directly leads to the concept of adaptivity in algorithms. The theoretical derivation and analysis is kept as elementary as possible. Nevertheless required somewhat more sophisticated mathematical theory is summarized in comprehensive form in an appendix. Complex relations are explained by numerous figures and illustrating examples. Non-trivial problems from regenerative energy, nanotechnology, surgery, and physiology are inserted. The text will appeal to graduate students and researchers on the job in mathematics, science, and technology. Conceptually, it has been written as a textbook including exercises and a software list, but at the same time it should be well-suited for self-study.
A Multigrid Tutorial
Author: William L. Briggs
Publisher: SIAM
ISBN: 9780898714623
Category : Mathematics
Languages : en
Pages : 318
Book Description
Mathematics of Computing -- Numerical Analysis.
Publisher: SIAM
ISBN: 9780898714623
Category : Mathematics
Languages : en
Pages : 318
Book Description
Mathematics of Computing -- Numerical Analysis.
Proceedings of the Seventh SIAM Conference on Parallel Processing for Scientific Computing
Author: David H. Bailey
Publisher: SIAM
ISBN: 9780898713442
Category : Science
Languages : en
Pages : 900
Book Description
Proceedings -- Parallel Computing.
Publisher: SIAM
ISBN: 9780898713442
Category : Science
Languages : en
Pages : 900
Book Description
Proceedings -- Parallel Computing.
Numerical Analysis
Author: Walter Gautschi
Publisher: Springer Science & Business Media
ISBN: 0817682597
Category : Mathematics
Languages : en
Pages : 611
Book Description
Revised and updated, this second edition of Walter Gautschi's successful Numerical Analysis explores computational methods for problems arising in the areas of classical analysis, approximation theory, and ordinary differential equations, among others. Topics included in the book are presented with a view toward stressing basic principles and maintaining simplicity and teachability as far as possible, while subjects requiring a higher level of technicality are referenced in detailed bibliographic notes at the end of each chapter. Readers are thus given the guidance and opportunity to pursue advanced modern topics in more depth. Along with updated references, new biographical notes, and enhanced notational clarity, this second edition includes the expansion of an already large collection of exercises and assignments, both the kind that deal with theoretical and practical aspects of the subject and those requiring machine computation and the use of mathematical software. Perhaps most notably, the edition also comes with a complete solutions manual, carefully developed and polished by the author, which will serve as an exceptionally valuable resource for instructors.
Publisher: Springer Science & Business Media
ISBN: 0817682597
Category : Mathematics
Languages : en
Pages : 611
Book Description
Revised and updated, this second edition of Walter Gautschi's successful Numerical Analysis explores computational methods for problems arising in the areas of classical analysis, approximation theory, and ordinary differential equations, among others. Topics included in the book are presented with a view toward stressing basic principles and maintaining simplicity and teachability as far as possible, while subjects requiring a higher level of technicality are referenced in detailed bibliographic notes at the end of each chapter. Readers are thus given the guidance and opportunity to pursue advanced modern topics in more depth. Along with updated references, new biographical notes, and enhanced notational clarity, this second edition includes the expansion of an already large collection of exercises and assignments, both the kind that deal with theoretical and practical aspects of the subject and those requiring machine computation and the use of mathematical software. Perhaps most notably, the edition also comes with a complete solutions manual, carefully developed and polished by the author, which will serve as an exceptionally valuable resource for instructors.
Matrix Preconditioning Techniques and Applications
Author: Ke Chen
Publisher: Cambridge University Press
ISBN: 9780521838283
Category : Mathematics
Languages : en
Pages : 616
Book Description
A comprehensive introduction to preconditioning techniques, now an essential part of successful and efficient iterative solutions of matrices.
Publisher: Cambridge University Press
ISBN: 9780521838283
Category : Mathematics
Languages : en
Pages : 616
Book Description
A comprehensive introduction to preconditioning techniques, now an essential part of successful and efficient iterative solutions of matrices.
Taylor Approximations for Stochastic Partial Differential Equations
Author: Arnulf Jentzen
Publisher: SIAM
ISBN: 9781611972016
Category : Mathematics
Languages : en
Pages : 234
Book Description
This book presents a systematic theory of Taylor expansions of evolutionary-type stochastic partial differential equations (SPDEs). The authors show how Taylor expansions can be used to derive higher order numerical methods for SPDEs, with a focus on pathwise and strong convergence. In the case of multiplicative noise, the driving noise process is assumed to be a cylindrical Wiener process, while in the case of additive noise the SPDE is assumed to be driven by an arbitrary stochastic process with Hl̲der continuous sample paths. Recent developments on numerical methods for random and stochastic ordinary differential equations are also included since these are relevant for solving spatially discretised SPDEs as well as of interest in their own right. The authors include the proof of an existence and uniqueness theorem under general assumptions on the coefficients as well as regularity estimates in an appendix.
Publisher: SIAM
ISBN: 9781611972016
Category : Mathematics
Languages : en
Pages : 234
Book Description
This book presents a systematic theory of Taylor expansions of evolutionary-type stochastic partial differential equations (SPDEs). The authors show how Taylor expansions can be used to derive higher order numerical methods for SPDEs, with a focus on pathwise and strong convergence. In the case of multiplicative noise, the driving noise process is assumed to be a cylindrical Wiener process, while in the case of additive noise the SPDE is assumed to be driven by an arbitrary stochastic process with Hl̲der continuous sample paths. Recent developments on numerical methods for random and stochastic ordinary differential equations are also included since these are relevant for solving spatially discretised SPDEs as well as of interest in their own right. The authors include the proof of an existence and uniqueness theorem under general assumptions on the coefficients as well as regularity estimates in an appendix.
Elliptic Marching Methods and Domain Decomposition
Author: Patrick J. Roache
Publisher: CRC Press
ISBN: 9780849373787
Category : Mathematics
Languages : en
Pages : 212
Book Description
One of the first things a student of partial differential equations learns is that it is impossible to solve elliptic equations by spatial marching. This new book describes how to do exactly that, providing a powerful tool for solving problems in fluid dynamics, heat transfer, electrostatics, and other fields characterized by discretized partial differential equations. Elliptic Marching Methods and Domain Decomposition demonstrates how to handle numerical instabilities (i.e., limitations on the size of the problem) that appear when one tries to solve these discretized equations with marching methods. The book also shows how marching methods can be superior to multigrid and pre-conditioned conjugate gradient (PCG) methods, particularly when used in the context of multiprocessor parallel computers. Techniques for using domain decomposition together with marching methods are detailed, clearly illustrating the benefits of these techniques for applications in engineering, applied mathematics, and the physical sciences.
Publisher: CRC Press
ISBN: 9780849373787
Category : Mathematics
Languages : en
Pages : 212
Book Description
One of the first things a student of partial differential equations learns is that it is impossible to solve elliptic equations by spatial marching. This new book describes how to do exactly that, providing a powerful tool for solving problems in fluid dynamics, heat transfer, electrostatics, and other fields characterized by discretized partial differential equations. Elliptic Marching Methods and Domain Decomposition demonstrates how to handle numerical instabilities (i.e., limitations on the size of the problem) that appear when one tries to solve these discretized equations with marching methods. The book also shows how marching methods can be superior to multigrid and pre-conditioned conjugate gradient (PCG) methods, particularly when used in the context of multiprocessor parallel computers. Techniques for using domain decomposition together with marching methods are detailed, clearly illustrating the benefits of these techniques for applications in engineering, applied mathematics, and the physical sciences.
Seventh Copper Mountain Conference on Multigrid Methods
Author: N. Duane Melson
Publisher:
ISBN:
Category :
Languages : en
Pages : 440
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 440
Book Description