Multi-Scale Damage Modeling for Advanced Composite Materials

Multi-Scale Damage Modeling for Advanced Composite Materials PDF Author: Bazle Z. Haque
Publisher: Wiley
ISBN: 9781118710067
Category : Technology & Engineering
Languages : en
Pages : 220

Get Book Here

Book Description
This book covers multi-scale damage modeling of composite materials while expanding classical techniques to consider advanced fiber architectures such as woven textile composites. Classical methods are expanded to the analysis of thick-section composites which opens the regime to ballistic and low velocity impact applications. These analyses are inherently multi-scale in nature, as deformation and failure mechanisms involve multiple phenomena on several length scales. Nano and micro scale modeling utilizing molecular and dynamic (MD) and advanced fracture computational techniques (XFEM and cohesive element approaches) can be employed to determine the property enhancements and toughening effects of nanoparticulate and carbon nanotube reinforcements. Material-by-design approaches to composite material development will be achieved through modeling of representative microstructures at multiple length scales.

Multi-Scale Damage Modeling for Advanced Composite Materials

Multi-Scale Damage Modeling for Advanced Composite Materials PDF Author: Bazle Z. Haque
Publisher: Wiley
ISBN: 9781118710067
Category : Technology & Engineering
Languages : en
Pages : 220

Get Book Here

Book Description
This book covers multi-scale damage modeling of composite materials while expanding classical techniques to consider advanced fiber architectures such as woven textile composites. Classical methods are expanded to the analysis of thick-section composites which opens the regime to ballistic and low velocity impact applications. These analyses are inherently multi-scale in nature, as deformation and failure mechanisms involve multiple phenomena on several length scales. Nano and micro scale modeling utilizing molecular and dynamic (MD) and advanced fracture computational techniques (XFEM and cohesive element approaches) can be employed to determine the property enhancements and toughening effects of nanoparticulate and carbon nanotube reinforcements. Material-by-design approaches to composite material development will be achieved through modeling of representative microstructures at multiple length scales.

Multiscale Modeling and Simulation of Composite Materials and Structures

Multiscale Modeling and Simulation of Composite Materials and Structures PDF Author: Young Kwon
Publisher: Springer Science & Business Media
ISBN: 0387363181
Category : Technology & Engineering
Languages : en
Pages : 634

Get Book Here

Book Description
This book presents the state-of-the-art in multiscale modeling and simulation techniques for composite materials and structures. It focuses on the structural and functional properties of engineering composites and the sustainable high performance of components and structures. The multiscale techniques can be also applied to nanocomposites which are important application areas in nanotechnology. There are few books available on this topic.

Multi-Scale Continuum Mechanics Modelling of Fibre-Reinforced Polymer Composites

Multi-Scale Continuum Mechanics Modelling of Fibre-Reinforced Polymer Composites PDF Author: Wim Van Paepegem
Publisher: Woodhead Publishing
ISBN: 0128189851
Category : Technology & Engineering
Languages : en
Pages : 766

Get Book Here

Book Description
Multi-scale modelling of composites is a very relevant topic in composites science. This is illustrated by the numerous sessions in the recent European and International Conferences on Composite Materials, but also by the fast developments in multi-scale modelling software tools, developed by large industrial players such as Siemens (Virtual Material Characterization toolkit and MultiMechanics virtual testing software), MSC/e-Xstream (Digimat software), Simulia (micromechanics plug-in in Abaqus), HyperSizer (Multi-scale design of composites), Altair (Altair Multiscale Designer) This book is intended to be an ideal reference on the latest advances in multi-scale modelling of fibre-reinforced polymer composites, that is accessible for both (young) researchers and end users of modelling software. We target three main groups: This book aims at a complete introduction and overview of the state-of-the-art in multi-scale modelling of composites in three axes: • ranging from prediction of homogenized elastic properties to nonlinear material behaviour • ranging from geometrical models for random packing of unidirectional fibres over meso-scale geometries for textile composites to orientation tensors for short fibre composites • ranging from damage modelling of unidirectionally reinforced composites over textile composites to short fibre-reinforced composites The book covers the three most important scales in multi-scale modelling of composites: (i) micro-scale, (ii) meso-scale and (iii) macro-scale. The nano-scale and related atomistic and molecular modelling approaches are deliberately excluded, since the book wants to focus on continuum mechanics and there are already a lot of dedicated books about polymer nanocomposites. A strong focus is put on physics-based damage modelling, in the sense that the chapters devote attention to modelling the different damage mechanisms (matrix cracking, fibre/matrix debonding, delamination, fibre fracture,...) in such a way that the underlying physics of the initiation and growth of these damage modes is respected. The book also gives room to not only discuss the finite element based approaches for multi-scale modelling, but also much faster methods that are popular in industrial software, such as Mean Field Homogenization methods (based on Mori-Tanaka and Eshelby solutions) and variational methods (shear lag theory and more advanced theories). Since the book targets a wide audience, the focus is put on the most common numerical approaches that are used in multi-scale modelling. Very specialized numerical methods like peridynamics modelling, Material Point Method, eXtended Finite Element Method (XFEM), isogeometric analysis, SPH (Smoothed Particle Hydrodynamics),... are excluded. Outline of the book The book is divided in three large parts, well balanced with each a similar number of chapters:

Numerical Modelling of Failure in Advanced Composite Materials

Numerical Modelling of Failure in Advanced Composite Materials PDF Author: Pedro P. Camanho
Publisher: Woodhead Publishing
ISBN: 0081003420
Category : Technology & Engineering
Languages : en
Pages : 562

Get Book Here

Book Description
Numerical Modelling of Failure in Advanced Composite Materials comprehensively examines the most recent analysis techniques for advanced composite materials. Advanced composite materials are becoming increasingly important for lightweight design in aerospace, wind energy, and mechanical and civil engineering. Essential for exploiting their potential is the ability to reliably predict their mechanical behaviour, particularly the onset and propagation of failure. Part One investigates numerical modeling approaches to interlaminar failure in advanced composite materials. Part Two considers numerical modelling approaches to intralaminar failure. Part Three presents new and emerging advanced numerical algorithms for modeling and simulation of failure. Part Four closes by examining the various engineering and scientific applications of numerical modeling for analysis of failure in advanced composite materials, such as prediction of impact damage, failure in textile composites, and fracture behavior in through-thickness reinforced laminates. - Examines the most recent analysis models for advanced composite materials in a coherent and comprehensive manner - Investigates numerical modelling approaches to interlaminar failure and intralaminar failure in advanced composite materials - Reviews advanced numerical algorithms for modeling and simulation of failure - Examines various engineering and scientific applications of numerical modelling for analysis of failure in advanced composite materials

Multiscale Modelling of Damage and Fracture Processes in Composite Materials

Multiscale Modelling of Damage and Fracture Processes in Composite Materials PDF Author: Tomasz Sadowski
Publisher: Springer
ISBN: 9783211295588
Category : Technology & Engineering
Languages : en
Pages : 310

Get Book Here

Book Description
This book explores damage growth and fracture processes in cementitious, ceramic, polymer and metal matrix composites, integrating properties like stiffness and strength with observation at below macroscopic scale. Advances in multiscale modelling and analysis pertain directly to materials which either have a range of relevant microstructural scales, like metals, or do not have a well-defined microstructure, like cementitious or ceramic composites.

Modeling Damage, Fatigue and Failure of Composite Materials

Modeling Damage, Fatigue and Failure of Composite Materials PDF Author: Ramesh Talreja
Publisher: Elsevier
ISBN: 0443184887
Category : Technology & Engineering
Languages : en
Pages : 620

Get Book Here

Book Description
Modeling Damage, Fatigue and Failure of Composite Materials, Second Edition provides the latest research in the field of composite materials, an area that has attracted a wealth of research, with significant interest in the areas of damage, fatigue, and failure. The book is fully updated, and is a comprehensive source of physics-based models for the analysis of progressive and critical failure phenomena in composite materials. It focuses on materials modeling while also reviewing treatments for analyzing failure in composite structures. Sections review damage development in composite materials such as generic damage and damage accumulation in textile composites and under multiaxial loading. Part Two focuses on the modeling of failure mechanisms in composite materials, with attention given to fiber/matrix cracking and debonding, compression failure, and delamination fracture. Final sections examine the modeling of damage and materials response in composite materials, including micro-level and multi-scale approaches, the failure analysis of composite materials and joints, and the applications of predictive failure models. - Provides a comprehensive source of physics-based models for the analysis of progressive and critical failure phenomena in composite materials - Assesses failure and life prediction in composite materials - Discusses the applications of predictive failure models such as computational approaches to failure analysis - Covers further developments in computational analyses and experimental techniques, along with new applications in aerospace, automotive, and energy (wind turbine blades) fields - Covers delamination and thermoplastic-based composites

Damage Modeling of Composite Structures

Damage Modeling of Composite Structures PDF Author: Pengfei Liu
Publisher: Elsevier
ISBN: 0323853536
Category : Technology & Engineering
Languages : en
Pages : 398

Get Book Here

Book Description
Damage Modeling of Composite Structures: Strength, Fracture, and Finite Element Analysis provides readers with a fundamental overview of the mechanics of composite materials, along with an outline of an array of modeling and numerical techniques used to analyze damage, failure mechanisms and safety tolerance. Strength prediction and finite element analysis of laminated composite structures are both covered, as are modeling techniques for delaminated composites under compression and shear. Viscoelastic cohesive/friction coupled model and finite element analysis for delamination analysis of composites under shear and for laminates under low-velocity impact are all covered at length. A concluding chapter discusses multiscale damage models and finite element analysis of composite structures. - Integrates intralaminar damage and interlaminar delamination under different load patterns, covering intralaminar damage constitutive models, failure criteria, damage evolution laws, and virtual crack closure techniques - Discusses numerical techniques for progressive failure analysis and modeling, as well as numerical convergence and mesh sensitivity, thus allowing for more accurate modeling - Features models and methods that can be seamlessly extended to analyze failure mechanisms and safety tolerance of composites under more complex loads, and in more extreme environments - Demonstrates applications of damage models and numerical methods

Simulation of damage mechanisms in weave reinforced materials based on multiscale modeling

Simulation of damage mechanisms in weave reinforced materials based on multiscale modeling PDF Author: Naake, Dominik Robert
Publisher: KIT Scientific Publishing
ISBN: 3731510057
Category : Technology & Engineering
Languages : en
Pages : 304

Get Book Here

Book Description
A weave reinforced composite material with a thermoplastic matrix is investigated by using a multiscale chain to predict the macroscopic material behavior. A large-strain framework for constitutive modeling with focus on material non-linearities, i.e. plasticity and damage is defined. The ability of the geometric and constitutive models to predict the deformation and failure behavior is demonstrated by means of selected examples.

Advanced Computational Materials Modeling

Advanced Computational Materials Modeling PDF Author: Miguel Vaz Junior
Publisher: John Wiley & Sons
ISBN: 3527632336
Category : Technology & Engineering
Languages : en
Pages : 453

Get Book Here

Book Description
With its discussion of strategies for modeling complex materials using new numerical techniques, mainly those based on the finite element method, this monograph covers a range of topics including computational plasticity, multi-scale formulations, optimization and parameter identification, damage mechanics and nonlinear finite elements.

Multiscale Modeling in Solid Mechanics

Multiscale Modeling in Solid Mechanics PDF Author: Ugo Galvanetto
Publisher: Imperial College Press
ISBN: 1848163088
Category : Science
Languages : en
Pages : 349

Get Book Here

Book Description
This unique volume presents the state of the art in the field of multiscale modeling in solid mechanics, with particular emphasis on computational approaches. For the first time, contributions from both leading experts in the field and younger promising researchers are combined to give a comprehensive description of the recently proposed techniques and the engineering problems tackled using these techniques. The book begins with a detailed introduction to the theories on which different multiscale approaches are based, with regards to linear Homogenisation as well as various nonlinear approaches. It then presents advanced applications of multiscale approaches applied to nonlinear mechanical problems. Finally, the novel topic of materials with self-similar structure is discussed. Sample Chapter(s). Chapter 1: Computational Homogenisation for Non-Linear Heterogeneous Solids (808 KB). Contents: Computational Homogenisation for Non-Linear Heterogeneous Solids (V G Kouznetsova et al.); Two-Scale Asymptotic Homogenisation-Based Finite Element Analysis of Composite Materials (Q-Z Xiao & B L Karihaloo); Multi-Scale Boundary Element Modelling of Material Degradation and Fracture (G K Sfantos & M H Aliabadi); Non-Uniform Transformation Field Analysis: A Reduced Model for Multiscale Non-Linear Problems in Solid Mechanics (J-C Michel & P Suquet); Multiscale Approach for the Thermomechanical Analysis of Hierarchical Structures (M J Lefik et al.); Recent Advances in Masonry Modelling: Micro-Modelling and Homogenisation (P B Louren o); Mechanics of Materials with Self-Similar Hierarchical Microstructure (R C Picu & M A Soare). Readership: Researchers and academics in the field of heterogeneous materials and mechanical engineering; professionals in aeronautical engineering and materials science.