Multi-electrochromism of Vanadium Pentoxide Thin Films Using AFM Nanolithography

Multi-electrochromism of Vanadium Pentoxide Thin Films Using AFM Nanolithography PDF Author: Shiho Iwanaga
Publisher:
ISBN:
Category : Microlithography
Languages : en
Pages : 174

Get Book Here

Book Description

Multi-electrochromism of Vanadium Pentoxide Thin Films Using AFM Nanolithography

Multi-electrochromism of Vanadium Pentoxide Thin Films Using AFM Nanolithography PDF Author: Shiho Iwanaga
Publisher:
ISBN:
Category : Microlithography
Languages : en
Pages : 174

Get Book Here

Book Description


Electrochromic Properties of Vanadium Pentoxide Nanostructured Thin Films

Electrochromic Properties of Vanadium Pentoxide Nanostructured Thin Films PDF Author: Afaf Almoabadi
Publisher:
ISBN:
Category :
Languages : en
Pages : 92

Get Book Here

Book Description
ABSTRACT Electrochromic Properties of Vanadium Pentoxide Nanostructured Thin Films Afaf Almoabadi The focus of this work is the improvement of the electrochromic properties of vanadium pentoxide thin films in order to expand its use. Indeed, because of its rather poor electrochromic properties, until now, vanadium pentoxide has only been used as a storage material in an electrochromic device, in conjunction with tungsten oxide, molybdenum oxide etc. To this purpose, vanadium pentoxide thin films were prepared under different conditions and characterized by using optical and electrochemical methods. Films were deposited on indium tin oxide (ITO) substrates by dip-coating at both room- and sub-zero temperature (-100C) and porosity in the sol-gel prepared vanadium pentoxide film was created by using templating methods. The morphology, optical and electrochromic properties of the macro- and mesoporous films, prepared in the presence of structure-directing agents such as polystyrene microspheres and triblock copolymer, have been compared with those of dense films. By using various methods to remove the template material, it was shown that the morphology of the vanadium pentoxide film can be controlled and new nanostructures can be created. The transformation of the lamellar into a nanorod structure, observed when the film is heated at 425-500◦C for several hours, resulted in the development of an elegant method for the synthesis of vanadium oxide nanostructures. The electrochromic performance of the nanorods prepared through the thermal treatment was found to be superior to that of the vanadium pentoxide with the layered structure, especially in the near-infrared region, demonstrating their potential for electrochromic applications. The structure, morphology, optical and electrochromic properties of dense and porous vanadium oxide films, coated at low temperature were also determined and compared to those of the corresponding films, deposited under room-temperature conditions. The results indicated that in the films coated at -100C, a residual compressive stress exists that originates from a non-uniformity in depth of the film, most probably, due to the formation of micro voids during the deposition. The micro voids are preserved during the heat-treatment of the films. The "micro void" morphology was found to account for the considerably improved electrochromic properties of the sub-zero dip-coated films. Low-temperature coated films, heated at 4500C for several hours, undergo the transformation from a layered to a highly uniform nanorod structure with important potential optoelectronic applications. The overall aim of this work is thus to evaluate how the morphology of vanadium pentoxide thin films is instrumental in obtaining a material with a high lithium ion intercalation capacity. With an appropriate morphology, the performance of vanadium oxide as electrochromic material and as cathode in lithium ion batteries can be improved significantly. For this purpose, both layered (dense and porous) and nanorod films were prepared and characterized. Scanning electron microscopy, cyclic voltammetry and electrical impedance spectroscopy measurements were used for the characterization of the different V2O5 films.

Effects of Microstructure and Oxidation State of Multi-valent Vanadium Oxide Thin Films for Use in Infrared Microbolometers

Effects of Microstructure and Oxidation State of Multi-valent Vanadium Oxide Thin Films for Use in Infrared Microbolometers PDF Author: Michael Allen Motyka
Publisher:
ISBN:
Category :
Languages : en
Pages : 220

Get Book Here

Book Description


Chemically Deposited Nanocrystalline Metal Oxide Thin Films

Chemically Deposited Nanocrystalline Metal Oxide Thin Films PDF Author: Fabian I. Ezema
Publisher: Springer Nature
ISBN: 3030684628
Category : Technology & Engineering
Languages : en
Pages : 926

Get Book Here

Book Description
This book guides beginners in the areas of thin film preparation, characterization, and device making, while providing insight into these areas for experts. As chemically deposited metal oxides are currently gaining attention in development of devices such as solar cells, supercapacitors, batteries, sensors, etc., the book illustrates how the chemical deposition route is emerging as a relatively inexpensive, simple, and convenient solution for large area deposition. The advancement in the nanostructured materials for the development of devices is fully discussed.

Oxide Electronics

Oxide Electronics PDF Author: Asim K. Ray
Publisher: John Wiley & Sons
ISBN: 1119529476
Category : Technology & Engineering
Languages : en
Pages : 628

Get Book Here

Book Description
Oxide Electronics Multiple disciplines converge in this insightful exploration of complex metal oxides and their functions and properties Oxide Electronics delivers a broad and comprehensive exploration of complex metal oxides designed to meet the multidisciplinary needs of electrical and electronic engineers, physicists, and material scientists. The distinguished author eschews complex mathematics whenever possible and focuses on the physical and functional properties of metal oxides in each chapter. Each of the sixteen chapters featured within the book begins with an abstract and an introduction to the topic, clear explanations are presented with graphical illustrations and relevant equations throughout the book. Numerous supporting references are included, and each chapter is self-contained, making them perfect for use both as a reference and as study material. Readers will learn how and why the field of oxide electronics is a key area of research and exploitation in materials science, electrical engineering, and semiconductor physics. The book encompasses every application area where the functional and electronic properties of various genres of oxides are exploited. Readers will also learn from topics like: Thorough discussions of High-k gate oxide for silicon heterostructure MOSFET devices and semiconductor-dielectric interfaces An exploration of printable high-mobility transparent amorphous oxide semiconductors Treatments of graphene oxide electronics, magnetic oxides, ferroelectric oxides, and materials for spin electronics Examinations of the calcium aluminate binary compound, perovoksites for photovoltaics, and oxide 2Degs Analyses of various applications for oxide electronics, including data storage, microprocessors, biomedical devices, LCDs, photovoltaic cells, TFTs, and sensors Suitable for researchers in semiconductor technology or working in materials science, electrical engineering, and physics, Oxide Electronics will also earn a place in the libraries of private industry researchers like device engineers working on electronic applications of oxide electronics. Engineers working on photovoltaics, sensors, or consumer electronics will also benefit from this book.

Recent Advances in Thin Films

Recent Advances in Thin Films PDF Author: Sushil Kumar
Publisher: Springer Nature
ISBN: 9811561168
Category : Technology & Engineering
Languages : en
Pages : 721

Get Book Here

Book Description
This volume comprises the expert contributions from the invited speakers at the 17th International Conference on Thin Films (ICTF 2017), held at CSIR-NPL, New Delhi, India. Thin film research has become increasingly important over the last few decades owing to the applications in latest technologies and devices. The book focuses on current advances in thin film deposition processes and characterization including thin film measurements. The chapters cover different types of thin films like metal, dielectric, organic and inorganic, and their diverse applications across transistors, resistors, capacitors, memory elements for computers, optical filters and mirrors, sensors, solar cells, LED's, transparent conducting coatings for liquid crystal display, printed circuit board, and automobile headlamp covers. This book can be a useful reference for students, researchers as well as industry professionals by providing an up-to-date knowledge on thin films and coatings.

Thin Film Metal-Oxides

Thin Film Metal-Oxides PDF Author: Shriram Ramanathan
Publisher: Springer Science & Business Media
ISBN: 1441906649
Category : Technology & Engineering
Languages : en
Pages : 344

Get Book Here

Book Description
Thin Film Metal-Oxides provides a representative account of the fundamental structure-property relations in oxide thin films. Functional properties of thin film oxides are discussed in the context of applications in emerging electronics and renewable energy technologies. Readers will find a detailed description of deposition and characterization of metal oxide thin films, theoretical treatment of select properties and their functional performance in solid state devices, from leading researchers. Scientists and engineers involved with oxide semiconductors, electronic materials and alternative energy will find Thin Film Metal-Oxides a useful reference.

Sol-Gel Technologies for Glass Producers and Users

Sol-Gel Technologies for Glass Producers and Users PDF Author: Michel Andre Aegerter
Publisher: Springer Science & Business Media
ISBN: 0387889531
Category : Technology & Engineering
Languages : en
Pages : 474

Get Book Here

Book Description
Sol-Gel Techniques for Glass Producers and Users provides technological information, descriptions and characterizations of prototypes, or products already on the market, and illustrates advantages and disadvantages of the sol-gel process in comparison to other methods. The first chapter entitled "Wet Chemical Technology" gives a summary of the basic principles of the sol-gel chemistry. The most promising applications are related to coatings. Chapter 2 describes the various "Wet Chemical Coating Technologies" from glass cleaning to many deposition and post-coating treatment techniques. These include patterning of coatings through direct or indirect techniques which have became very important and for which the sol-gel processing is particularly well adapted. Chapter 3 entitled "Bulk Glass Technologies" reports on the preparation of special glasses for different applications. Chapter 4 entitled "Coatings and Materials Properties" describes the properties of the different coatings and the sol-gel materials, fibers and powders. The chapter also includes a section dedicated to the characterization techniques especially applied to sol-gel coatings and products.

Chemical Solution Deposition of Functional Oxide Thin Films

Chemical Solution Deposition of Functional Oxide Thin Films PDF Author: Theodor Schneller
Publisher: Springer Science & Business Media
ISBN: 3211993118
Category : Technology & Engineering
Languages : en
Pages : 801

Get Book Here

Book Description
This is the first text to cover all aspects of solution processed functional oxide thin-films. Chemical Solution Deposition (CSD) comprises all solution based thin- film deposition techniques, which involve chemical reactions of precursors during the formation of the oxide films, i. e. sol-gel type routes, metallo-organic decomposition routes, hybrid routes, etc. While the development of sol-gel type processes for optical coatings on glass by silicon dioxide and titanium dioxide dates from the mid-20th century, the first CSD derived electronic oxide thin films, such as lead zirconate titanate, were prepared in the 1980’s. Since then CSD has emerged as a highly flexible and cost-effective technique for the fabrication of a very wide variety of functional oxide thin films. Application areas include, for example, integrated dielectric capacitors, ferroelectric random access memories, pyroelectric infrared detectors, piezoelectric micro-electromechanical systems, antireflective coatings, optical filters, conducting-, transparent conducting-, and superconducting layers, luminescent coatings, gas sensors, thin film solid-oxide fuel cells, and photoelectrocatalytic solar cells. In the appendix detailed “cooking recipes” for selected material systems are offered.

Double-Gyroid-Structured Functional Materials

Double-Gyroid-Structured Functional Materials PDF Author: Maik Rudolf Johann Scherer
Publisher: Springer Science & Business Media
ISBN: 3319003542
Category : Technology & Engineering
Languages : en
Pages : 211

Get Book Here

Book Description
The development of new high-tech applications and devices has created a seemingly insatiable demand for novel functional materials with enhanced and tailored properties. Such materials can be achieved by three-dimensional structuring on the nanoscale, giving rise to a significant enhancement of particular functional characteristics which stems from the ability to access both surface/interface and bulk properties. The highly ordered, bicontinuous double-gyroid morphology is a fascinating and particularly suitable 3D nanostructure for this purpose due to its highly accessible surface area, connectivity, narrow pore diameter distribution and superb structural stability. The presented study encompasses a wide range of modern nanotechnology techniques in a highly versatile bottom-up nanopatterning strategy that splits the fabrication process into two successive steps: the preparation of mesoporous double-gyroid templates utilizing diblock copolymer self-assembly, and their replication with a functional material employing electrochemical deposition and atomic layer deposition. The double-gyroid structured materials discussed include metals, metal oxides, and conjugated polymers, which are applied and characterized in high-performance devices, such as electrochromic displays, supercapacitors, chemical sensors and photovoltaics. This publication addresses a wide range of readers, from researchers and specialists who are professionally active in the field, to more general readers interested in chemistry, nanoscience and physics.