Author: Yoshihiro Sawano
Publisher: CRC Press
ISBN: 1000064077
Category : Mathematics
Languages : en
Pages : 427
Book Description
Morrey spaces were introduced by Charles Morrey to investigate the local behaviour of solutions to second order elliptic partial differential equations. The technique is very useful in many areas in mathematics, in particular in harmonic analysis, potential theory, partial differential equations and mathematical physics. Across two volumes, the authors of Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s discuss the current state of art and perspectives of developments of this theory of Morrey spaces, with the emphasis in Volume II focused mainly generalizations and interpolation of Morrey spaces. Features Provides a ‘from-scratch’ overview of the topic readable by anyone with an understanding of integration theory Suitable for graduate students, masters course students, and researchers in PDE's or Geometry Replete with exercises and examples to aid the reader’s understanding
Morrey Spaces
Author: Yoshihiro Sawano
Publisher: CRC Press
ISBN: 1000064077
Category : Mathematics
Languages : en
Pages : 427
Book Description
Morrey spaces were introduced by Charles Morrey to investigate the local behaviour of solutions to second order elliptic partial differential equations. The technique is very useful in many areas in mathematics, in particular in harmonic analysis, potential theory, partial differential equations and mathematical physics. Across two volumes, the authors of Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s discuss the current state of art and perspectives of developments of this theory of Morrey spaces, with the emphasis in Volume II focused mainly generalizations and interpolation of Morrey spaces. Features Provides a ‘from-scratch’ overview of the topic readable by anyone with an understanding of integration theory Suitable for graduate students, masters course students, and researchers in PDE's or Geometry Replete with exercises and examples to aid the reader’s understanding
Publisher: CRC Press
ISBN: 1000064077
Category : Mathematics
Languages : en
Pages : 427
Book Description
Morrey spaces were introduced by Charles Morrey to investigate the local behaviour of solutions to second order elliptic partial differential equations. The technique is very useful in many areas in mathematics, in particular in harmonic analysis, potential theory, partial differential equations and mathematical physics. Across two volumes, the authors of Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s discuss the current state of art and perspectives of developments of this theory of Morrey spaces, with the emphasis in Volume II focused mainly generalizations and interpolation of Morrey spaces. Features Provides a ‘from-scratch’ overview of the topic readable by anyone with an understanding of integration theory Suitable for graduate students, masters course students, and researchers in PDE's or Geometry Replete with exercises and examples to aid the reader’s understanding
Morrey Spaces
Author: Yoshihiro Sawano
Publisher: CRC Press
ISBN: 1000064131
Category : Mathematics
Languages : en
Pages : 514
Book Description
Morrey spaces were introduced by Charles Morrey to investigate the local behaviour of solutions to second order elliptic partial differential equations. The technique is very useful in many areas in mathematics, in particular in harmonic analysis, potential theory, partial differential equations and mathematical physics. Across two volumes, the authors of Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s discuss the current state of art and perspectives of developments of this theory of Morrey spaces, with focus on harmonic analysis in volume I and generalizations and interpolation of Morrey spaces in volume II. Features Provides a ‘from-scratch’ overview of the topic readable by anyone with an understanding of integration theory Suitable for graduate students, masters course students, and researchers in PDE's or Geometry Replete with exercises and examples to aid the reader’s understanding
Publisher: CRC Press
ISBN: 1000064131
Category : Mathematics
Languages : en
Pages : 514
Book Description
Morrey spaces were introduced by Charles Morrey to investigate the local behaviour of solutions to second order elliptic partial differential equations. The technique is very useful in many areas in mathematics, in particular in harmonic analysis, potential theory, partial differential equations and mathematical physics. Across two volumes, the authors of Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s discuss the current state of art and perspectives of developments of this theory of Morrey spaces, with focus on harmonic analysis in volume I and generalizations and interpolation of Morrey spaces in volume II. Features Provides a ‘from-scratch’ overview of the topic readable by anyone with an understanding of integration theory Suitable for graduate students, masters course students, and researchers in PDE's or Geometry Replete with exercises and examples to aid the reader’s understanding
Weighted Morrey Spaces
Author: Marcus Laurel
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111461459
Category : Mathematics
Languages : en
Pages : 367
Book Description
This monograph is a testament to the potency of the method of singular integrals of layer potential type in solving boundary value problems for weakly elliptic systems in the setting of Muckenhoupt-weighted Morrey spaces and their pre-duals. A functional analytic framework for Muckenhoupt-weighted Morrey spaces in the rough setting of Ahlfors regular sets is built from the ground up and subsequently supports a Calderón-Zygmund theory on this brand of Morrey space in the optimal geometric environment of uniformly rectifiable sets. A thorough duality theory for such Morrey spaces is also developed and ushers in a never-before-seen Calderón-Zygmund theory for Muckenhoupt-weighted Block spaces. Both weighted Morrey and Block spaces are also considered through the lens of (generalized) Banach function spaces, and ultimately, a variety of boundary value problems are formulated and solved with boundary data arbitrarily prescribed from either scale of space. The fairly self-contained nature of this monograph ensures that graduate students, researchers, and professionals in a variety of fields, e.g., function space theory, harmonic analysis, and PDE, will find this monograph a welcome and valuable addition to the mathematical literature.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111461459
Category : Mathematics
Languages : en
Pages : 367
Book Description
This monograph is a testament to the potency of the method of singular integrals of layer potential type in solving boundary value problems for weakly elliptic systems in the setting of Muckenhoupt-weighted Morrey spaces and their pre-duals. A functional analytic framework for Muckenhoupt-weighted Morrey spaces in the rough setting of Ahlfors regular sets is built from the ground up and subsequently supports a Calderón-Zygmund theory on this brand of Morrey space in the optimal geometric environment of uniformly rectifiable sets. A thorough duality theory for such Morrey spaces is also developed and ushers in a never-before-seen Calderón-Zygmund theory for Muckenhoupt-weighted Block spaces. Both weighted Morrey and Block spaces are also considered through the lens of (generalized) Banach function spaces, and ultimately, a variety of boundary value problems are formulated and solved with boundary data arbitrarily prescribed from either scale of space. The fairly self-contained nature of this monograph ensures that graduate students, researchers, and professionals in a variety of fields, e.g., function space theory, harmonic analysis, and PDE, will find this monograph a welcome and valuable addition to the mathematical literature.
Morrey and Campanato Meet Besov, Lizorkin and Triebel
Author: Wen Yuan
Publisher: Springer Science & Business Media
ISBN: 3642146058
Category : Mathematics
Languages : en
Pages : 295
Book Description
During the last 60 years the theory of function spaces has been a subject of growing interest and increasing diversity. Based on three formally different developments, namely, the theory of Besov and Triebel-Lizorkin spaces, the theory of Morrey and Campanato spaces and the theory of Q spaces, the authors develop a unified framework for all of these spaces. As a byproduct, the authors provide a completion of the theory of Triebel-Lizorkin spaces when p = ∞.
Publisher: Springer Science & Business Media
ISBN: 3642146058
Category : Mathematics
Languages : en
Pages : 295
Book Description
During the last 60 years the theory of function spaces has been a subject of growing interest and increasing diversity. Based on three formally different developments, namely, the theory of Besov and Triebel-Lizorkin spaces, the theory of Morrey and Campanato spaces and the theory of Q spaces, the authors develop a unified framework for all of these spaces. As a byproduct, the authors provide a completion of the theory of Triebel-Lizorkin spaces when p = ∞.
Harmonic Analysis
Author: Satoru Igari
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 228
Book Description
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 228
Book Description
Theory of Besov Spaces
Author: Yoshihiro Sawano
Publisher: Springer
ISBN: 9811308365
Category : Mathematics
Languages : en
Pages : 964
Book Description
This is a self-contained textbook of the theory of Besov spaces and Triebel–Lizorkin spaces oriented toward applications to partial differential equations and problems of harmonic analysis. These include a priori estimates of elliptic differential equations, the T1 theorem, pseudo-differential operators, the generator of semi-group and spaces on domains, and the Kato problem. Various function spaces are introduced to overcome the shortcomings of Besov spaces and Triebel–Lizorkin spaces as well. The only prior knowledge required of readers is familiarity with integration theory and some elementary functional analysis.Illustrations are included to show the complicated way in which spaces are defined. Owing to that complexity, many definitions are required. The necessary terminology is provided at the outset, and the theory of distributions, L^p spaces, the Hardy–Littlewood maximal operator, and the singular integral operators are called upon. One of the highlights is that the proof of the Sobolev embedding theorem is extremely simple. There are two types for each function space: a homogeneous one and an inhomogeneous one. The theory of function spaces, which readers usually learn in a standard course, can be readily applied to the inhomogeneous one. However, that theory is not sufficient for a homogeneous space; it needs to be reinforced with some knowledge of the theory of distributions. This topic, however subtle, is also covered within this volume. Additionally, related function spaces—Hardy spaces, bounded mean oscillation spaces, and Hölder continuous spaces—are defined and discussed, and it is shown that they are special cases of Besov spaces and Triebel–Lizorkin spaces.
Publisher: Springer
ISBN: 9811308365
Category : Mathematics
Languages : en
Pages : 964
Book Description
This is a self-contained textbook of the theory of Besov spaces and Triebel–Lizorkin spaces oriented toward applications to partial differential equations and problems of harmonic analysis. These include a priori estimates of elliptic differential equations, the T1 theorem, pseudo-differential operators, the generator of semi-group and spaces on domains, and the Kato problem. Various function spaces are introduced to overcome the shortcomings of Besov spaces and Triebel–Lizorkin spaces as well. The only prior knowledge required of readers is familiarity with integration theory and some elementary functional analysis.Illustrations are included to show the complicated way in which spaces are defined. Owing to that complexity, many definitions are required. The necessary terminology is provided at the outset, and the theory of distributions, L^p spaces, the Hardy–Littlewood maximal operator, and the singular integral operators are called upon. One of the highlights is that the proof of the Sobolev embedding theorem is extremely simple. There are two types for each function space: a homogeneous one and an inhomogeneous one. The theory of function spaces, which readers usually learn in a standard course, can be readily applied to the inhomogeneous one. However, that theory is not sufficient for a homogeneous space; it needs to be reinforced with some knowledge of the theory of distributions. This topic, however subtle, is also covered within this volume. Additionally, related function spaces—Hardy spaces, bounded mean oscillation spaces, and Hölder continuous spaces—are defined and discussed, and it is shown that they are special cases of Besov spaces and Triebel–Lizorkin spaces.
Function Spaces and Inequalities
Author: Pankaj Jain
Publisher: Springer
ISBN: 981106119X
Category : Mathematics
Languages : en
Pages : 334
Book Description
This book features original research and survey articles on the topics of function spaces and inequalities. It focuses on (variable/grand/small) Lebesgue spaces, Orlicz spaces, Lorentz spaces, and Morrey spaces and deals with mapping properties of operators, (weighted) inequalities, pointwise multipliers and interpolation. Moreover, it considers Sobolev–Besov and Triebel–Lizorkin type smoothness spaces. The book includes papers by leading international researchers, presented at the International Conference on Function Spaces and Inequalities, held at the South Asian University, New Delhi, India, on 11–15 December 2015, which focused on recent developments in the theory of spaces with variable exponents. It also offers further investigations concerning Sobolev-type embeddings, discrete inequalities and harmonic analysis. Each chapter is dedicated to a specific topic and written by leading experts, providing an overview of the subject and stimulating future research.
Publisher: Springer
ISBN: 981106119X
Category : Mathematics
Languages : en
Pages : 334
Book Description
This book features original research and survey articles on the topics of function spaces and inequalities. It focuses on (variable/grand/small) Lebesgue spaces, Orlicz spaces, Lorentz spaces, and Morrey spaces and deals with mapping properties of operators, (weighted) inequalities, pointwise multipliers and interpolation. Moreover, it considers Sobolev–Besov and Triebel–Lizorkin type smoothness spaces. The book includes papers by leading international researchers, presented at the International Conference on Function Spaces and Inequalities, held at the South Asian University, New Delhi, India, on 11–15 December 2015, which focused on recent developments in the theory of spaces with variable exponents. It also offers further investigations concerning Sobolev-type embeddings, discrete inequalities and harmonic analysis. Each chapter is dedicated to a specific topic and written by leading experts, providing an overview of the subject and stimulating future research.
Infinite Dimensional Analysis, Quantum Probability and Applications
Author: Luigi Accardi
Publisher: Springer Nature
ISBN: 3031061705
Category : Mathematics
Languages : en
Pages : 369
Book Description
This proceedings volume gathers selected, peer-reviewed papers presented at the 41st International Conference on Infinite Dimensional Analysis, Quantum Probability and Related Topics (QP41) that was virtually held at the United Arab Emirates University (UAEU) in Al Ain, Abu Dhabi, from March 28th to April 1st, 2021. The works cover recent developments in quantum probability and infinite dimensional analysis, with a special focus on applications to mathematical physics and quantum information theory. Covered topics include white noise theory, quantum field theory, quantum Markov processes, free probability, interacting Fock spaces, and more. By emphasizing the interconnection and interdependence of such research topics and their real-life applications, this reputed conference has set itself as a distinguished forum to communicate and discuss new findings in truly relevant aspects of theoretical and applied mathematics, notably in the field of mathematical physics, as well as an event of choice for the promotion of mathematical applications that address the most relevant problems found in industry. That makes this volume a suitable reading not only for researchers and graduate students with an interest in the field but for practitioners as well.
Publisher: Springer Nature
ISBN: 3031061705
Category : Mathematics
Languages : en
Pages : 369
Book Description
This proceedings volume gathers selected, peer-reviewed papers presented at the 41st International Conference on Infinite Dimensional Analysis, Quantum Probability and Related Topics (QP41) that was virtually held at the United Arab Emirates University (UAEU) in Al Ain, Abu Dhabi, from March 28th to April 1st, 2021. The works cover recent developments in quantum probability and infinite dimensional analysis, with a special focus on applications to mathematical physics and quantum information theory. Covered topics include white noise theory, quantum field theory, quantum Markov processes, free probability, interacting Fock spaces, and more. By emphasizing the interconnection and interdependence of such research topics and their real-life applications, this reputed conference has set itself as a distinguished forum to communicate and discuss new findings in truly relevant aspects of theoretical and applied mathematics, notably in the field of mathematical physics, as well as an event of choice for the promotion of mathematical applications that address the most relevant problems found in industry. That makes this volume a suitable reading not only for researchers and graduate students with an interest in the field but for practitioners as well.
Operator Theory and Harmonic Analysis
Author: Alexey N. Karapetyants
Publisher: Springer Nature
ISBN: 3030774937
Category : Mathematics
Languages : en
Pages : 585
Book Description
This volume is part of the collaboration agreement between Springer and the ISAAC society. This is the first in the two-volume series originating from the 2020 activities within the international scientific conference "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis" (OTHA), Southern Federal University in Rostov-on-Don, Russia. This volume is focused on general harmonic analysis and its numerous applications. The two volumes cover new trends and advances in several very important fields of mathematics, developed intensively over the last decade. The relevance of this topic is related to the study of complex multiparameter objects required when considering operators and objects with variable parameters.
Publisher: Springer Nature
ISBN: 3030774937
Category : Mathematics
Languages : en
Pages : 585
Book Description
This volume is part of the collaboration agreement between Springer and the ISAAC society. This is the first in the two-volume series originating from the 2020 activities within the international scientific conference "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis" (OTHA), Southern Federal University in Rostov-on-Don, Russia. This volume is focused on general harmonic analysis and its numerous applications. The two volumes cover new trends and advances in several very important fields of mathematics, developed intensively over the last decade. The relevance of this topic is related to the study of complex multiparameter objects required when considering operators and objects with variable parameters.
Operator Theory, Pseudo-Differential Equations, and Mathematical Physics
Author: Yuri I. Karlovich
Publisher: Springer Science & Business Media
ISBN: 3034805373
Category : Mathematics
Languages : en
Pages : 425
Book Description
This volume is a collection of papers devoted to the 70th birthday of Professor Vladimir Rabinovich. The opening article (by Stefan Samko) includes a short biography of Vladimir Rabinovich, along with some personal recollections and bibliography of his work. It is followed by twenty research and survey papers in various branches of analysis (pseudodifferential operators and partial differential equations, Toeplitz, Hankel, and convolution type operators, variable Lebesgue spaces, etc.) close to Professor Rabinovich's research interests. Many of them are written by participants of the International workshop “Analysis, Operator Theory, and Mathematical Physics” (Ixtapa, Mexico, January 23–27, 2012) having a long history of scientific collaboration with Vladimir Rabinovich, and are partially based on the talks presented there.The volume will be of great interest to researchers and graduate students in differential equations, operator theory, functional and harmonic analysis, and mathematical physics.
Publisher: Springer Science & Business Media
ISBN: 3034805373
Category : Mathematics
Languages : en
Pages : 425
Book Description
This volume is a collection of papers devoted to the 70th birthday of Professor Vladimir Rabinovich. The opening article (by Stefan Samko) includes a short biography of Vladimir Rabinovich, along with some personal recollections and bibliography of his work. It is followed by twenty research and survey papers in various branches of analysis (pseudodifferential operators and partial differential equations, Toeplitz, Hankel, and convolution type operators, variable Lebesgue spaces, etc.) close to Professor Rabinovich's research interests. Many of them are written by participants of the International workshop “Analysis, Operator Theory, and Mathematical Physics” (Ixtapa, Mexico, January 23–27, 2012) having a long history of scientific collaboration with Vladimir Rabinovich, and are partially based on the talks presented there.The volume will be of great interest to researchers and graduate students in differential equations, operator theory, functional and harmonic analysis, and mathematical physics.