Morphological and Structural Modification of Silicon, Titanium and Iron Oxides by Plasma Enhanced Chemical Vapor Deposition for Solar Water Splitting

Morphological and Structural Modification of Silicon, Titanium and Iron Oxides by Plasma Enhanced Chemical Vapor Deposition for Solar Water Splitting PDF Author: Myeongwhun Pyeon
Publisher:
ISBN:
Category : Hematite
Languages : en
Pages :

Get Book Here

Book Description


Plasma Electrolytic Oxidation (PEO) Coatings

Plasma Electrolytic Oxidation (PEO) Coatings PDF Author: Marta Mohedano
Publisher: MDPI
ISBN: 3036505520
Category : Science
Languages : en
Pages : 172

Get Book Here

Book Description
Plasma electrolytic oxidation (PEO), also known as micro-arc oxidation (MAO), functionalizes surfaces, improving the mechanical, thermal, and corrosion performance of metallic substrates, along with other tailored properties (e.g., biocompatibility, catalysis, antibacterial response, self-lubrication, etc.). The extensive field of applications of this technique ranges from structural components, in particular, in the transport sector, to more advanced fields, such as bioengineering. The present Special Issue covers the latest advances in PEO‐coated light alloys for structural (Al, Mg) and biomedical applications (Ti, Mg), with 10 research papers and 1 review from leading research groups around the world.

Plasma-enhanced Chemical Vapor Deposition of Titanium Silicide

Plasma-enhanced Chemical Vapor Deposition of Titanium Silicide PDF Author: Edwin Earl Cervantes
Publisher:
ISBN:
Category :
Languages : en
Pages : 312

Get Book Here

Book Description


Enhancing the Photoelectrochemical Water Splitting Characteristics of Titanium and Tungsten Oxide Based Materials Via Doping and Sensitization

Enhancing the Photoelectrochemical Water Splitting Characteristics of Titanium and Tungsten Oxide Based Materials Via Doping and Sensitization PDF Author: Ruchi Gakhar
Publisher:
ISBN:
Category : Electronic books
Languages : en
Pages : 602

Get Book Here

Book Description
To better utilize solar energy for clean energy production, efforts are needed to overcome the natural diurnal variation and the diffuse nature of sunlight. Photoelectrochemical (PEC) hydrogen generation by water splitting is a promising approach to harvest solar energy. Hydrogen gas is a clean and high energy capacity fuel. However, the solar-to-hydrogen conversion efficiency is determined mainly by the properties of the materials employed as photoanodes. Improving the power-conversion efficiency of PEC water splitting requires the design of inexpensive and efficient photoanodes that have strong visible light absorption, fast charge separation, and lower charge recombination rate. In the present study, PEC characteristics of various semiconducting photoelectrodes such as TiO2, WO3 and CuWO4 were investigated. Due to the inherent wide gap, such metal oxides absorb only ultraviolet radiation. Since ultraviolet radiation only composes of 4% of the sun's spectrum, the wide band gap results in lower charge collection and efficiency. Thus to improve optical absorption and charge separation, it is necessary to modify the band gap with low band gap materials.The two approaches followed for modification of band gap are doping and sensitization. Here, TiO2 and WO3 based photoanodes were sensitized with ternary quantum dots, while doping was the primary method utilized to investigate the modification of the band gap of CuWO4. The first part of this dissertation reports the synthesis of ternary quantum dot - sensitized titania nanotube array photoelectrodes. Ternary quantum dots with varying band gaps and composition (MnCdSe, ZnCdSe and CdSSe) were tethered to the surface of TiO2 nanotubes using successive ionic layer adsorption and reaction (SILAR) technique. The stoichiometry of ternary quantum dots was estimated to beMn0.095Cd0.95Se, Zn0.16Cd0.84Se and CdS0.54Se0.46. The effect of varying number of sensitization cycles and annealing temperature on optical and photoelectrochemical properties of prepared photoanodes were studied. The absorption properties and surface morphology of the sensitized tubes was analyzed using UV-visible spectroscopy and scanning electron microscopy. The phase composition was determined using X-Ray diffraction and X-ray photoelectron spectroscopy techniques. Electrodes were also evaluated for their stability using inductively coupled plasma optical emission spectrometry. Results show that the sensitization of TiO2 nanotubes with MnCdSe (8.79 mA/cm2), ZnCdSe (12.70 mA/cm2) and CdSSe (15.58 mA/cm2) resulted in up to a 30 fold increase in photocurrent compared to unsensitized nanotubes (0.4 mA/cm2). In the second part, the application of WO3 as photoanode for water splitting was explored. The porous thin films of WO3 films were sensitized with ternary quantum dots (ZnCdSe) using the SILAR technique. The structural, surface morphological and optical properties of the sensitized WO3 thin films were studied. PEC characteristics of the sensitized films were found to be 120 fold increase (8.53 mA/cm2) in comparison to that of unmodified WO3 films (0.07 mA/cm2). In the last part of this dissertation, CuWO4 was investigated as the potential photoanode material. The band gap of CuWO4 was estimated using density functional theory (DFT) calculations. The band structure was obtained using the first-principles plane wave self-consistent field (pwscf) method and the effect of nickel dopant on the band gap and optical properties of CuWO4 was evaluated. Theoretical calculations showed that doping led to a decrease in band gap. The validity of the theoretical approach was evaluated by experimentally synthesizing Ni-doped CuWO4 electrodes. Experimental results showed that the band gap indeed decreases when CuWO4 was doped with Ni, and thus validated the DFT approach. Ternary quantum dots were found to increase the PEC activity of TiO2 and WO3 based photoelectrodes by 120 fold. In addition, a method of computing band gap of semiconductor using DFT modeling was developed and validated with experimental results.

Surface Modifications and Growth of Titanium Dioxide for Photo-Electrochemical Water Splitting

Surface Modifications and Growth of Titanium Dioxide for Photo-Electrochemical Water Splitting PDF Author: John Alexander
Publisher: Springer
ISBN: 3319342290
Category : Technology & Engineering
Languages : en
Pages : 366

Get Book Here

Book Description
This outstanding thesis provides a wide-ranging overview of the growth of titanium dioxide thin films and its use in photo-electrochemicals such as water splitting. The context for water splitting is introduced with the theory of semiconductor-liquid junctions, which are dealt with in detail. In particular plasmonic enhancement of TiO2 by the addition of gold nanoparticles is considered in depth, including a thorough and critical review of the literature, which discusses the possible mechanisms that may be at work. Plasmonic enhancement is demonstrated with gold nanoparticles on Nb-doped TiO2. Finally, the use of temperature and pressure to control the phase and morphology of thin films grown by pulsed laser deposition is presented.

Photoelectrochemical Water Splitting

Photoelectrochemical Water Splitting PDF Author: Zhebo Chen
Publisher: Springer Science & Business Media
ISBN: 1461482984
Category : Science
Languages : en
Pages : 130

Get Book Here

Book Description
This book outlines many of the techniques involved in materials development and characterization for photoelectrochemical (PEC) – for example, proper metrics for describing material performance, how to assemble testing cells and prepare materials for assessment of their properties, and how to perform the experimental measurements needed to achieve reliable results towards better scientific understanding. For each technique, proper procedure, benefits, limitations, and data interpretation are discussed. Consolidating this information in a short, accessible, and easy to read reference guide will allow researchers to more rapidly immerse themselves into PEC research and also better compare their results against those of other researchers to better advance materials development. This book serves as a “how-to” guide for researchers engaged in or interested in engaging in the field of photoelectrochemical (PEC) water splitting. PEC water splitting is a rapidly growing field of research in which the goal is to develop materials which can absorb the energy from sunlight to drive electrochemical hydrogen production from the splitting of water. The substantial complexity in the scientific understanding and experimental protocols needed to sufficiently pursue accurate and reliable materials development means that a large need exists to consolidate and standardize the most common methods utilized by researchers in this field.

Plasma Enhanced Chemical Vapor Deposition of Silicon Oxide and Silicon Nitride

Plasma Enhanced Chemical Vapor Deposition of Silicon Oxide and Silicon Nitride PDF Author: William H. Ritchie
Publisher:
ISBN:
Category : Plasma (Ionized gases)
Languages : en
Pages : 118

Get Book Here

Book Description


Plasma Enhanced Chemical Vapor Deposition of Titanium Oxide Thin Films for Dielectric Applicaitons

Plasma Enhanced Chemical Vapor Deposition of Titanium Oxide Thin Films for Dielectric Applicaitons PDF Author: Wenli Yang
Publisher:
ISBN:
Category : Dielectrics
Languages : en
Pages : 298

Get Book Here

Book Description


Remote Plasma Enhanced Chemical Vapor Deposition of Fluorinated Silicon Oxide Films Using 1,2bis(methyldifluorosilyl)ethane and Triethoxyfluorosilane

Remote Plasma Enhanced Chemical Vapor Deposition of Fluorinated Silicon Oxide Films Using 1,2bis(methyldifluorosilyl)ethane and Triethoxyfluorosilane PDF Author: Zhongping Jin
Publisher:
ISBN:
Category : Fluorine
Languages : en
Pages : 274

Get Book Here

Book Description


Plasma Enhanced Chemical Vapor Deposition of Silicon Oxycarbide Thin Films

Plasma Enhanced Chemical Vapor Deposition of Silicon Oxycarbide Thin Films PDF Author: Gina Marie Buccellato
Publisher:
ISBN:
Category :
Languages : en
Pages : 230

Get Book Here

Book Description