Author: Eric Ostertag
Publisher: Springer Science & Business Media
ISBN: 3642137342
Category : Technology & Engineering
Languages : en
Pages : 359
Book Description
This book presents the various design methods of a state-feedback control law and of an observer. The considered systems are of continuous-time and of discrete-time nature, monovariable or multivariable, the last ones being of main consideration. Three different approaches are described: • Linear design methods, with an emphasis on decoupling strategies, and a general formula for multivariable controller or observer design; • Quadratic optimization methods: Linear Quadratic Control (LQC), optimal Kalman filtering, Linear Quadratic Gaussian (LQG) control; • Linear matrix inequalities (LMIs) to solve linear and quadratic problems. The duality between control and observation is taken to advantage and extended up to the mathematical domain. A large number of exercises, all given with their detailed solutions, mostly obtained with MATLAB, reinforce and exemplify the practical orientation of this book. The programs, created by the author for their solving, are available on the Internet sites of Springer and of MathWorks for downloading. This book is targeted at students of Engineering Schools or Universities, at the Master’s level, at engineers desiring to design and implement innovative control methods, and at researchers.
Mono- and Multivariable Control and Estimation
Author: Eric Ostertag
Publisher: Springer Science & Business Media
ISBN: 3642137342
Category : Technology & Engineering
Languages : en
Pages : 359
Book Description
This book presents the various design methods of a state-feedback control law and of an observer. The considered systems are of continuous-time and of discrete-time nature, monovariable or multivariable, the last ones being of main consideration. Three different approaches are described: • Linear design methods, with an emphasis on decoupling strategies, and a general formula for multivariable controller or observer design; • Quadratic optimization methods: Linear Quadratic Control (LQC), optimal Kalman filtering, Linear Quadratic Gaussian (LQG) control; • Linear matrix inequalities (LMIs) to solve linear and quadratic problems. The duality between control and observation is taken to advantage and extended up to the mathematical domain. A large number of exercises, all given with their detailed solutions, mostly obtained with MATLAB, reinforce and exemplify the practical orientation of this book. The programs, created by the author for their solving, are available on the Internet sites of Springer and of MathWorks for downloading. This book is targeted at students of Engineering Schools or Universities, at the Master’s level, at engineers desiring to design and implement innovative control methods, and at researchers.
Publisher: Springer Science & Business Media
ISBN: 3642137342
Category : Technology & Engineering
Languages : en
Pages : 359
Book Description
This book presents the various design methods of a state-feedback control law and of an observer. The considered systems are of continuous-time and of discrete-time nature, monovariable or multivariable, the last ones being of main consideration. Three different approaches are described: • Linear design methods, with an emphasis on decoupling strategies, and a general formula for multivariable controller or observer design; • Quadratic optimization methods: Linear Quadratic Control (LQC), optimal Kalman filtering, Linear Quadratic Gaussian (LQG) control; • Linear matrix inequalities (LMIs) to solve linear and quadratic problems. The duality between control and observation is taken to advantage and extended up to the mathematical domain. A large number of exercises, all given with their detailed solutions, mostly obtained with MATLAB, reinforce and exemplify the practical orientation of this book. The programs, created by the author for their solving, are available on the Internet sites of Springer and of MathWorks for downloading. This book is targeted at students of Engineering Schools or Universities, at the Master’s level, at engineers desiring to design and implement innovative control methods, and at researchers.
Mono- and Multivariable Control and Estimation
Author: Eric Ostertag
Publisher:
ISBN: 9783642137358
Category :
Languages : en
Pages : 360
Book Description
Publisher:
ISBN: 9783642137358
Category :
Languages : en
Pages : 360
Book Description
Dynamic Estimation and Control of Power Systems
Author: Abhinav Kumar Singh
Publisher: Academic Press
ISBN: 0128140062
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
Dynamic estimation and control is a fast growing and widely researched field of study that lays the foundation for a new generation of technologies that can dynamically, adaptively and automatically stabilize power systems. This book provides a comprehensive introduction to research techniques for real-time estimation and control of power systems. Dynamic Estimation and Control of Power Systems coherently and concisely explains key concepts in a step by step manner, beginning with the fundamentals and building up to the latest developments of the field. Each chapter features examples to illustrate the main ideas, and effective research tools are presented for signal processing-based estimation of the dynamic states and subsequent control, both centralized and decentralized, as well as linear and nonlinear. Detailed mathematical proofs are included for readers who desire a deeper technical understanding of the methods. This book is an ideal research reference for engineers and researchers working on monitoring and stability of modern grids, as well as postgraduate students studying these topics. It serves to deliver a clear understanding of the tools needed for estimation and control, while also acting as a basis for readers to further develop new and improved approaches in their own research. - Offers the first concise, single resource on dynamic estimation and control of power systems - Provides both an understanding of estimation and control concepts and a comparison of results - Includes detailed case-studies, including MATLAB codes, to explain and demonstrate the concepts presented
Publisher: Academic Press
ISBN: 0128140062
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
Dynamic estimation and control is a fast growing and widely researched field of study that lays the foundation for a new generation of technologies that can dynamically, adaptively and automatically stabilize power systems. This book provides a comprehensive introduction to research techniques for real-time estimation and control of power systems. Dynamic Estimation and Control of Power Systems coherently and concisely explains key concepts in a step by step manner, beginning with the fundamentals and building up to the latest developments of the field. Each chapter features examples to illustrate the main ideas, and effective research tools are presented for signal processing-based estimation of the dynamic states and subsequent control, both centralized and decentralized, as well as linear and nonlinear. Detailed mathematical proofs are included for readers who desire a deeper technical understanding of the methods. This book is an ideal research reference for engineers and researchers working on monitoring and stability of modern grids, as well as postgraduate students studying these topics. It serves to deliver a clear understanding of the tools needed for estimation and control, while also acting as a basis for readers to further develop new and improved approaches in their own research. - Offers the first concise, single resource on dynamic estimation and control of power systems - Provides both an understanding of estimation and control concepts and a comparison of results - Includes detailed case-studies, including MATLAB codes, to explain and demonstrate the concepts presented
Optimization for Control, Observation and Safety
Author: Guillermo Valencia-Palomo
Publisher: MDPI
ISBN: 3039284401
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
Mathematical optimization is the selection of the best element in a set with respect to a given criterion. Optimization has become one of the most used tools in control theory to compute control laws, adjust parameters (tuning), estimate states, fit model parameters, find conditions in order to fulfill a given closed-loop property, among others. Optimization also plays an important role in the design of fault detection and isolation systems to prevent safety hazards and production losses that require the detection and identification of faults, as early as possible to minimize their impacts by implementing real-time fault detection and fault-tolerant systems. Recently, it has been proven that many optimization problems with convex objective functions and linear matrix inequality (LMI) constraints can be solved easily and efficiently using existing software, which increases the flexibility and applicability of the control algorithms. Therefore, real-world control systems need to comply with several conditions and constraints that have to be taken into account in the problem formulation, which represents a challenge in the application of the optimization algorithms. This book offers an overview of the state-of-the-art of the most advanced optimization techniques and their applications in control engineering.
Publisher: MDPI
ISBN: 3039284401
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
Mathematical optimization is the selection of the best element in a set with respect to a given criterion. Optimization has become one of the most used tools in control theory to compute control laws, adjust parameters (tuning), estimate states, fit model parameters, find conditions in order to fulfill a given closed-loop property, among others. Optimization also plays an important role in the design of fault detection and isolation systems to prevent safety hazards and production losses that require the detection and identification of faults, as early as possible to minimize their impacts by implementing real-time fault detection and fault-tolerant systems. Recently, it has been proven that many optimization problems with convex objective functions and linear matrix inequality (LMI) constraints can be solved easily and efficiently using existing software, which increases the flexibility and applicability of the control algorithms. Therefore, real-world control systems need to comply with several conditions and constraints that have to be taken into account in the problem formulation, which represents a challenge in the application of the optimization algorithms. This book offers an overview of the state-of-the-art of the most advanced optimization techniques and their applications in control engineering.
Spacecraft Attitude Control
Author: Chuang Liu
Publisher: Elsevier
ISBN: 0323990061
Category : Technology & Engineering
Languages : en
Pages : 386
Book Description
Spacecraft Attitude Control: A Linear Matrix Inequality Approach solves problemsfor spacecraft attitude control systems using convex optimization and, specifi cally,through a linear matrix inequality (LMI) approach. High-precision pointing and improvedrobustness in the face of external disturbances and other uncertainties are requirementsfor the current generation of spacecraft. This book presents an LMI approach to spacecraftattitude control and shows that all uncertainties in the maneuvering process can besolved numerically. It explains how a model-like state space can be developed through amathematical presentation of attitude control systems, allowing the controller in question tobe applied universally. The authors describe a wide variety of novel and robust controllers,applicable both to spacecraft attitude control and easily extendable to second-ordersystems. Spacecraft Attitude Control provides its readers with an accessible introductionto spacecraft attitude control and robust systems, giving an extensive survey of currentresearch and helping researchers improve robust control performance. - Considers the control requirements of modern spacecraft - Presents rigid and flexible spacecraft control systems with inherent uncertainties mathematically, leading to a model-like state space - Develops a variety of novel and robust controllers directly applicable to spacecraft control as well as extendable to other second-order systems - Includes a systematic survey of recent research in spacecraft attitude control
Publisher: Elsevier
ISBN: 0323990061
Category : Technology & Engineering
Languages : en
Pages : 386
Book Description
Spacecraft Attitude Control: A Linear Matrix Inequality Approach solves problemsfor spacecraft attitude control systems using convex optimization and, specifi cally,through a linear matrix inequality (LMI) approach. High-precision pointing and improvedrobustness in the face of external disturbances and other uncertainties are requirementsfor the current generation of spacecraft. This book presents an LMI approach to spacecraftattitude control and shows that all uncertainties in the maneuvering process can besolved numerically. It explains how a model-like state space can be developed through amathematical presentation of attitude control systems, allowing the controller in question tobe applied universally. The authors describe a wide variety of novel and robust controllers,applicable both to spacecraft attitude control and easily extendable to second-ordersystems. Spacecraft Attitude Control provides its readers with an accessible introductionto spacecraft attitude control and robust systems, giving an extensive survey of currentresearch and helping researchers improve robust control performance. - Considers the control requirements of modern spacecraft - Presents rigid and flexible spacecraft control systems with inherent uncertainties mathematically, leading to a model-like state space - Develops a variety of novel and robust controllers directly applicable to spacecraft control as well as extendable to other second-order systems - Includes a systematic survey of recent research in spacecraft attitude control
LMIs in Control Systems
Author: Guang-Ren Duan
Publisher: CRC Press
ISBN: 1466583002
Category : Computers
Languages : en
Pages : 482
Book Description
Although LMI has emerged as a powerful tool with applications across the major domains of systems and control, there has been a need for a textbook that provides an accessible introduction to LMIs in control systems analysis and design. Filling this need, LMIs in Control Systems: Analysis, Design and Applications focuses on the basic analysis and d
Publisher: CRC Press
ISBN: 1466583002
Category : Computers
Languages : en
Pages : 482
Book Description
Although LMI has emerged as a powerful tool with applications across the major domains of systems and control, there has been a need for a textbook that provides an accessible introduction to LMIs in control systems analysis and design. Filling this need, LMIs in Control Systems: Analysis, Design and Applications focuses on the basic analysis and d
Proceedings of 19th Latin American Control Congress (LACC 2022)
Author: Orestes Llanes-Santiago
Publisher: Springer Nature
ISBN: 3031263618
Category : Technology & Engineering
Languages : en
Pages : 319
Book Description
This book presents the main results of the 19th Latin American Congress of Automatic Control held in November 2022 in Havana, Cuba. The Congress showed several main research results obtained by researchers from diverse countries in the last four years. Of the papers sent to Congress, 28 were finally accepted for presentation after a rigorous analysis of scientific novelty and quality. For their presentation in this book, the papers were divided into 5 major sections that appear in the following order: Part 1. Robust and Nonlinear Control The main research topics addressed in this part are related to fault-tolerant control loops, control by sliding modes, and robust tuning of PID controllers. Examples of electrical motors and chemical processes are used to demonstrate the feasibility of using the proposed techniques. Part 2. Fault Diagnosis in Industrial Systems Fault diagnosis in industrial plants is a very important topic in the Industry 4.0 paradigm. In this part, new techniques of fault diagnosis in mechanical systems using Poincaré features; a real case study for predicting the time of the remaining job cycle at a water treatment plant; and a predictive fault diagnosis for isolated photovoltaic systems are presented. A novel methodology for detecting and locating cyber-attacks in water distribution networks using computational intelligence tools is also presented. Part 3. Robotic and Autonomous Systems New control strategies for path following for autonomous tractors and unmanned aquatic vehicles are analyzed in this part. Moreover, the important topic related to the battery health-aware model predictive control planning for autonomous racing vehicles and the use of robots for monitoring and remediation applications are examined. Part 4. Modeling, Identification, and Delayed Systems A model-based methodology for the efficient selection of centrifugal pumps; the use of probabilistic Boolean networks in smart grid models; the utilization of PSO metaheuristic algorithm in the selection of a model structure; and two schemes to control high-order delayed systems are among the main topics examined in this part. Part 5. Low-Cost Systems and Biomedical Applications In this part, some applications of low-cost monitoring and control systems and two automatic systems used for the characterization of creatinine in wastes samples during hemodialysis process and differential acquisition of blood pressure are shown.
Publisher: Springer Nature
ISBN: 3031263618
Category : Technology & Engineering
Languages : en
Pages : 319
Book Description
This book presents the main results of the 19th Latin American Congress of Automatic Control held in November 2022 in Havana, Cuba. The Congress showed several main research results obtained by researchers from diverse countries in the last four years. Of the papers sent to Congress, 28 were finally accepted for presentation after a rigorous analysis of scientific novelty and quality. For their presentation in this book, the papers were divided into 5 major sections that appear in the following order: Part 1. Robust and Nonlinear Control The main research topics addressed in this part are related to fault-tolerant control loops, control by sliding modes, and robust tuning of PID controllers. Examples of electrical motors and chemical processes are used to demonstrate the feasibility of using the proposed techniques. Part 2. Fault Diagnosis in Industrial Systems Fault diagnosis in industrial plants is a very important topic in the Industry 4.0 paradigm. In this part, new techniques of fault diagnosis in mechanical systems using Poincaré features; a real case study for predicting the time of the remaining job cycle at a water treatment plant; and a predictive fault diagnosis for isolated photovoltaic systems are presented. A novel methodology for detecting and locating cyber-attacks in water distribution networks using computational intelligence tools is also presented. Part 3. Robotic and Autonomous Systems New control strategies for path following for autonomous tractors and unmanned aquatic vehicles are analyzed in this part. Moreover, the important topic related to the battery health-aware model predictive control planning for autonomous racing vehicles and the use of robots for monitoring and remediation applications are examined. Part 4. Modeling, Identification, and Delayed Systems A model-based methodology for the efficient selection of centrifugal pumps; the use of probabilistic Boolean networks in smart grid models; the utilization of PSO metaheuristic algorithm in the selection of a model structure; and two schemes to control high-order delayed systems are among the main topics examined in this part. Part 5. Low-Cost Systems and Biomedical Applications In this part, some applications of low-cost monitoring and control systems and two automatic systems used for the characterization of creatinine in wastes samples during hemodialysis process and differential acquisition of blood pressure are shown.
Multibody Mechatronic Systems
Author: Marco Ceccarelli
Publisher: Springer
ISBN: 3319098586
Category : Technology & Engineering
Languages : en
Pages : 568
Book Description
This volume contains the Proceedings of MUSME 2014, held at Huatulco in Oaxaca, Mexico, October 2014. Topics include analysis and synthesis of mechanisms; dynamics of multibody systems; design algorithms for mechatronic systems; simulation procedures and results; prototypes and their performance; robots and micromachines; experimental validations; theory of mechatronic simulation; mechatronic systems; and control of mechatronic systems. The MUSME symposium on Multibody Systems and Mechatronics was held under the auspices of IFToMM, the International Federation for Promotion of Mechanism and Machine Science, and FeIbIM, the Iberoamerican Federation of Mechanical Engineering. Since the first symposium in 2002, MUSME events have been characterised by the way they stimulate the integration between the various mechatronics and multibody systems dynamics disciplines, present a forum for facilitating contacts among researchers and students mainly in South American countries, and serve as a joint conference for the IFToMM and FeIbIM communities.
Publisher: Springer
ISBN: 3319098586
Category : Technology & Engineering
Languages : en
Pages : 568
Book Description
This volume contains the Proceedings of MUSME 2014, held at Huatulco in Oaxaca, Mexico, October 2014. Topics include analysis and synthesis of mechanisms; dynamics of multibody systems; design algorithms for mechatronic systems; simulation procedures and results; prototypes and their performance; robots and micromachines; experimental validations; theory of mechatronic simulation; mechatronic systems; and control of mechatronic systems. The MUSME symposium on Multibody Systems and Mechatronics was held under the auspices of IFToMM, the International Federation for Promotion of Mechanism and Machine Science, and FeIbIM, the Iberoamerican Federation of Mechanical Engineering. Since the first symposium in 2002, MUSME events have been characterised by the way they stimulate the integration between the various mechatronics and multibody systems dynamics disciplines, present a forum for facilitating contacts among researchers and students mainly in South American countries, and serve as a joint conference for the IFToMM and FeIbIM communities.
Computer Aided Design of Multivariable Technological Systems
Author: G. G. Leininger
Publisher: Elsevier
ISBN: 148314688X
Category : Computers
Languages : en
Pages : 715
Book Description
Computer Aided Design of Multivariable Technological Systems covers the proceedings of the Second International Federation of Automatic Control (IFAC). The book reviews papers that discuss topics about the use of Computer Aided Design (CAD) in designing multivariable system, such as theoretical issues, applications, and implementations. The book tackles several topics relevant to the use of CAD in designing multivariable systems. Topics include quasi-classical approach to multivariable feedback system designs; fuzzy control for multivariable systems; root loci with multiple gain parameters; multivariable frequency domain stability criteria; and computational algorithms for pole assignment in linear multivariable systems. The text will be of great use to professionals whose work involves designing and implementing multivariable systems.
Publisher: Elsevier
ISBN: 148314688X
Category : Computers
Languages : en
Pages : 715
Book Description
Computer Aided Design of Multivariable Technological Systems covers the proceedings of the Second International Federation of Automatic Control (IFAC). The book reviews papers that discuss topics about the use of Computer Aided Design (CAD) in designing multivariable system, such as theoretical issues, applications, and implementations. The book tackles several topics relevant to the use of CAD in designing multivariable systems. Topics include quasi-classical approach to multivariable feedback system designs; fuzzy control for multivariable systems; root loci with multiple gain parameters; multivariable frequency domain stability criteria; and computational algorithms for pole assignment in linear multivariable systems. The text will be of great use to professionals whose work involves designing and implementing multivariable systems.
Identification and System Parameter Estimation 1982
Author: G. A. Bekey
Publisher: Elsevier
ISBN: 1483165787
Category : Technology & Engineering
Languages : en
Pages : 869
Book Description
Identification and System Parameter Estimation 1982 covers the proceedings of the Sixth International Federation of Automatic Control (IFAC) Symposium. The book also serves as a tribute to Dr. Naum S. Rajbman. The text covers issues concerning identification and estimation, such as increasing interrelationships between identification/estimation and other aspects of system theory, including control theory, signal processing, experimental design, numerical mathematics, pattern recognition, and information theory. The book also provides coverage regarding the application and problems faced by several engineering and scientific fields that use identification and estimation, such as biological systems, traffic control, geophysics, aeronautics, robotics, economics, and power systems. Researchers from all scientific fields will find this book a great reference material, since it presents topics that concern various disciplines.
Publisher: Elsevier
ISBN: 1483165787
Category : Technology & Engineering
Languages : en
Pages : 869
Book Description
Identification and System Parameter Estimation 1982 covers the proceedings of the Sixth International Federation of Automatic Control (IFAC) Symposium. The book also serves as a tribute to Dr. Naum S. Rajbman. The text covers issues concerning identification and estimation, such as increasing interrelationships between identification/estimation and other aspects of system theory, including control theory, signal processing, experimental design, numerical mathematics, pattern recognition, and information theory. The book also provides coverage regarding the application and problems faced by several engineering and scientific fields that use identification and estimation, such as biological systems, traffic control, geophysics, aeronautics, robotics, economics, and power systems. Researchers from all scientific fields will find this book a great reference material, since it presents topics that concern various disciplines.