Monitoring the Microgravity Environment Quality On-Board the International Space Station Using Soft Computing Techniques. Part 2; Preliminary System Performance Results

Monitoring the Microgravity Environment Quality On-Board the International Space Station Using Soft Computing Techniques. Part 2; Preliminary System Performance Results PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721525980
Category :
Languages : en
Pages : 36

Get Book Here

Book Description
This paper presents the preliminary performance results of the artificial intelligence monitoring system in full operational mode using near real time acceleration data downlinked from the International Space Station. Preliminary microgravity environment characterization analysis result for the International Space Station (Increment-2), using the monitoring system is presented. Also, comparison between the system predicted performance based on ground test data for the US laboratory "Destiny" module and actual on-orbit performance, using measured acceleration data from the U.S. laboratory module of the International Space Station is presented. Finally, preliminary on-orbit disturbance magnitude levels are presented for the Experiment of Physics of Colloids in Space, which are compared with on ground test data. The ground test data for the Experiment of Physics of Colloids in Space were acquired from the Microgravity Emission Laboratory, located at the NASA Glenn Research Center, Cleveland, Ohio. The artificial intelligence was developed by the NASA Glenn Principal Investigator Microgravity Services Project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment of time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed to. From the Principal Investigator Microgravity Services' web site, the principal investigator teams can monitor via a dynamic graphical display, implemented in Java, in near real time, which event(s) is/are on, such as crew activities, pumps, fans, centrifuges, compressor, crew exercise, structural modes, etc., and decide whether or not to run their experiments, whenever that is an option, based on the acceleration magnitude and frequency sensitivity associated with that experiment. This monitoring system detects primarily the vibratory disturbance sources. The system has built-in capability to detect both

Monitoring the Microgravity Environment Quality On-Board the International Space Station Using Soft Computing Techniques. Part 2; Preliminary System Performance Results

Monitoring the Microgravity Environment Quality On-Board the International Space Station Using Soft Computing Techniques. Part 2; Preliminary System Performance Results PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721525980
Category :
Languages : en
Pages : 36

Get Book Here

Book Description
This paper presents the preliminary performance results of the artificial intelligence monitoring system in full operational mode using near real time acceleration data downlinked from the International Space Station. Preliminary microgravity environment characterization analysis result for the International Space Station (Increment-2), using the monitoring system is presented. Also, comparison between the system predicted performance based on ground test data for the US laboratory "Destiny" module and actual on-orbit performance, using measured acceleration data from the U.S. laboratory module of the International Space Station is presented. Finally, preliminary on-orbit disturbance magnitude levels are presented for the Experiment of Physics of Colloids in Space, which are compared with on ground test data. The ground test data for the Experiment of Physics of Colloids in Space were acquired from the Microgravity Emission Laboratory, located at the NASA Glenn Research Center, Cleveland, Ohio. The artificial intelligence was developed by the NASA Glenn Principal Investigator Microgravity Services Project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment of time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed to. From the Principal Investigator Microgravity Services' web site, the principal investigator teams can monitor via a dynamic graphical display, implemented in Java, in near real time, which event(s) is/are on, such as crew activities, pumps, fans, centrifuges, compressor, crew exercise, structural modes, etc., and decide whether or not to run their experiments, whenever that is an option, based on the acceleration magnitude and frequency sensitivity associated with that experiment. This monitoring system detects primarily the vibratory disturbance sources. The system has built-in capability to detect both

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 702

Get Book Here

Book Description


Large Space Structures & Systems in the Space Station Era

Large Space Structures & Systems in the Space Station Era PDF Author:
Publisher:
ISBN:
Category : Large space structures (Astronautics)
Languages : en
Pages : 700

Get Book Here

Book Description


International Aerospace Abstracts

International Aerospace Abstracts PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1042

Get Book Here

Book Description


NASA SP-7500

NASA SP-7500 PDF Author: United States. National Aeronautics and Space Administration
Publisher:
ISBN:
Category :
Languages : en
Pages : 752

Get Book Here

Book Description


Large Space Structures & Systems in the Space Station Era

Large Space Structures & Systems in the Space Station Era PDF Author:
Publisher:
ISBN:
Category : Large space structures (Astronautics)
Languages : en
Pages : 380

Get Book Here

Book Description


Human Health and Performance Risks of Space Exploration Missions

Human Health and Performance Risks of Space Exploration Missions PDF Author: Jancy C. McPhee
Publisher: U. S. National Aeronautics & Space Administration
ISBN:
Category : Biography & Autobiography
Languages : en
Pages : 396

Get Book Here

Book Description


Benefits Stemming from Space Exploration

Benefits Stemming from Space Exploration PDF Author: Isecg
Publisher:
ISBN: 9781457849091
Category :
Languages : en
Pages : 26

Get Book Here

Book Description


Recapturing a Future for Space Exploration

Recapturing a Future for Space Exploration PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309163846
Category : Science
Languages : en
Pages : 464

Get Book Here

Book Description
More than four decades have passed since a human first set foot on the Moon. Great strides have been made in our understanding of what is required to support an enduring human presence in space, as evidenced by progressively more advanced orbiting human outposts, culminating in the current International Space Station (ISS). However, of the more than 500 humans who have so far ventured into space, most have gone only as far as near-Earth orbit, and none have traveled beyond the orbit of the Moon. Achieving humans' further progress into the solar system had proved far more difficult than imagined in the heady days of the Apollo missions, but the potential rewards remain substantial. During its more than 50-year history, NASA's success in human space exploration has depended on the agency's ability to effectively address a wide range of biomedical, engineering, physical science, and related obstacles-an achievement made possible by NASA's strong and productive commitments to life and physical sciences research for human space exploration, and by its use of human space exploration infrastructures for scientific discovery. The Committee for the Decadal Survey of Biological and Physical Sciences acknowledges the many achievements of NASA, which are all the more remarkable given budgetary challenges and changing directions within the agency. In the past decade, however, a consequence of those challenges has been a life and physical sciences research program that was dramatically reduced in both scale and scope, with the result that the agency is poorly positioned to take full advantage of the scientific opportunities offered by the now fully equipped and staffed ISS laboratory, or to effectively pursue the scientific research needed to support the development of advanced human exploration capabilities. Although its review has left it deeply concerned about the current state of NASA's life and physical sciences research, the Committee for the Decadal Survey on Biological and Physical Sciences in Space is nevertheless convinced that a focused science and engineering program can achieve successes that will bring the space community, the U.S. public, and policymakers to an understanding that we are ready for the next significant phase of human space exploration. The goal of this report is to lay out steps and develop a forward-looking portfolio of research that will provide the basis for recapturing the excitement and value of human spaceflight-thereby enabling the U.S. space program to deliver on new exploration initiatives that serve the nation, excite the public, and place the United States again at the forefront of space exploration for the global good.

Summary Report of Mission Acceleration Measurements for STS-78

Summary Report of Mission Acceleration Measurements for STS-78 PDF Author:
Publisher:
ISBN:
Category : Acceleration (Mechanics)
Languages : en
Pages : 214

Get Book Here

Book Description