Author: J. Simon
Publisher: Springer Science & Business Media
ISBN: 3642700128
Category : Technology & Engineering
Languages : en
Pages : 302
Book Description
During the past thirty years considerable efforts have been made to design the synthesis and the study of molecular semiconductors. Molecular semiconductors - and more generally molecular materials - involve interactions between individual subunits which can be separately synthesized. Organic and metallo-organic derivatives are the basis of most of the molecular materials. A survey of the literature on molecular semiconductors leaves one rather confused. It does seem to be very difficult to correlate the molecular structure of these semiconductors with their experimental electrical properties. For inorganic materials a simple definition delimits a fairly homogeneous family. If an inorganic material has a conductivity intermediate between that of an 12 1 1 3 1 1 insulator « 10- n- cm- ) and that of a metal (> 10 n- cm- ), then it is a semiconductor and will exhibit the characteristic properties of this family, such as junction formation, photoconductivity, and the photovoltaic effect. For molecular compounds, such simplicity is certainly not the case. A huge number of molecular and macromolecular systems have been described which possess an intermediate conductivity. However, the various attempts which have been made to rationalize their properties have, more often than not, failed. Even very basic electrical properties such as the mechanism of the charge carrier formation or the nature and the density ofthe dopants are not known in detail. The study of molecular semiconductor junctions is very probably the most powerful approach to shed light on these problems.
Molecular Semiconductors
Author: J. Simon
Publisher: Springer Science & Business Media
ISBN: 3642700128
Category : Technology & Engineering
Languages : en
Pages : 302
Book Description
During the past thirty years considerable efforts have been made to design the synthesis and the study of molecular semiconductors. Molecular semiconductors - and more generally molecular materials - involve interactions between individual subunits which can be separately synthesized. Organic and metallo-organic derivatives are the basis of most of the molecular materials. A survey of the literature on molecular semiconductors leaves one rather confused. It does seem to be very difficult to correlate the molecular structure of these semiconductors with their experimental electrical properties. For inorganic materials a simple definition delimits a fairly homogeneous family. If an inorganic material has a conductivity intermediate between that of an 12 1 1 3 1 1 insulator « 10- n- cm- ) and that of a metal (> 10 n- cm- ), then it is a semiconductor and will exhibit the characteristic properties of this family, such as junction formation, photoconductivity, and the photovoltaic effect. For molecular compounds, such simplicity is certainly not the case. A huge number of molecular and macromolecular systems have been described which possess an intermediate conductivity. However, the various attempts which have been made to rationalize their properties have, more often than not, failed. Even very basic electrical properties such as the mechanism of the charge carrier formation or the nature and the density ofthe dopants are not known in detail. The study of molecular semiconductor junctions is very probably the most powerful approach to shed light on these problems.
Publisher: Springer Science & Business Media
ISBN: 3642700128
Category : Technology & Engineering
Languages : en
Pages : 302
Book Description
During the past thirty years considerable efforts have been made to design the synthesis and the study of molecular semiconductors. Molecular semiconductors - and more generally molecular materials - involve interactions between individual subunits which can be separately synthesized. Organic and metallo-organic derivatives are the basis of most of the molecular materials. A survey of the literature on molecular semiconductors leaves one rather confused. It does seem to be very difficult to correlate the molecular structure of these semiconductors with their experimental electrical properties. For inorganic materials a simple definition delimits a fairly homogeneous family. If an inorganic material has a conductivity intermediate between that of an 12 1 1 3 1 1 insulator « 10- n- cm- ) and that of a metal (> 10 n- cm- ), then it is a semiconductor and will exhibit the characteristic properties of this family, such as junction formation, photoconductivity, and the photovoltaic effect. For molecular compounds, such simplicity is certainly not the case. A huge number of molecular and macromolecular systems have been described which possess an intermediate conductivity. However, the various attempts which have been made to rationalize their properties have, more often than not, failed. Even very basic electrical properties such as the mechanism of the charge carrier formation or the nature and the density ofthe dopants are not known in detail. The study of molecular semiconductor junctions is very probably the most powerful approach to shed light on these problems.
Molecular Spintronics
Author: Marta Galbiati
Publisher: Springer
ISBN: 3319226118
Category : Science
Languages : en
Pages : 191
Book Description
This thesis targets molecular or organic spintronics and more particularly the spin polarization tailoring opportunities that arise from the ferromagnetic metal/molecule hybridization at interfaces: the new concept of spinterface. Molecular or organic spintronics is an emerging research field at the frontier between organic chemistry and spintronics. The manuscript is divided into three parts, the first of which introduces the basic concepts of spintronics and advantages that molecules can bring to this field. The state of the art on organic and molecular spintronics is also presented, with a special emphasis on the physics and experimental evidence for spinterfaces. The book’s second and third parts are dedicated to the two main experimental topics investigated in the thesis: Self-Assembled Monolayers (SAMs) and Organic Semiconductors (OSCs). The study of SAMs-based magnetic tunnel nanojunctions reveals the potential to modulate the properties of such devices “at will,” since each part of the molecule can be tuned independently like a “LEGO” building block. The study of Alq3-based spin valves reveals magnetoresistance effects at room temperature and is aimed at understanding the respective roles played by the two interfaces. Through the development of these systems, we demonstrate their potential for spintronics and provide a solid foundation for spin polarization engineering at the molecular level.
Publisher: Springer
ISBN: 3319226118
Category : Science
Languages : en
Pages : 191
Book Description
This thesis targets molecular or organic spintronics and more particularly the spin polarization tailoring opportunities that arise from the ferromagnetic metal/molecule hybridization at interfaces: the new concept of spinterface. Molecular or organic spintronics is an emerging research field at the frontier between organic chemistry and spintronics. The manuscript is divided into three parts, the first of which introduces the basic concepts of spintronics and advantages that molecules can bring to this field. The state of the art on organic and molecular spintronics is also presented, with a special emphasis on the physics and experimental evidence for spinterfaces. The book’s second and third parts are dedicated to the two main experimental topics investigated in the thesis: Self-Assembled Monolayers (SAMs) and Organic Semiconductors (OSCs). The study of SAMs-based magnetic tunnel nanojunctions reveals the potential to modulate the properties of such devices “at will,” since each part of the molecule can be tuned independently like a “LEGO” building block. The study of Alq3-based spin valves reveals magnetoresistance effects at room temperature and is aimed at understanding the respective roles played by the two interfaces. Through the development of these systems, we demonstrate their potential for spintronics and provide a solid foundation for spin polarization engineering at the molecular level.
Electronic Structure of Organic Semiconductors
Author: Luís Alcácer
Publisher: Morgan & Claypool Publishers
ISBN: 1643271687
Category : Technology & Engineering
Languages : en
Pages : 135
Book Description
Written in the perspective of an experimental chemist, this book puts together some fundamentals from chemistry, solid state physics and quantum chemistry, to help with understanding and predicting the electronic and optical properties of organic semiconductors, both polymers and small molecules. The text is intended to assist graduate students and researchers in the field of organic electronics to use theory to design more efficient materials for organic electronic devices such as organic solar cells, light emitting diodes and field effect transistors. After addressing some basic topics in solid state physics, a comprehensive introduction to molecular orbitals and band theory leads to a description of computational methods based on Hartree-Fock and density functional theory (DFT), for predicting geometry conformations, frontier levels and energy band structures. Topological defects and transport and optical properties are then addressed, and one of the most commonly used transparent conducting polymers, PEDOT:PSS, is described in some detail as a case study.
Publisher: Morgan & Claypool Publishers
ISBN: 1643271687
Category : Technology & Engineering
Languages : en
Pages : 135
Book Description
Written in the perspective of an experimental chemist, this book puts together some fundamentals from chemistry, solid state physics and quantum chemistry, to help with understanding and predicting the electronic and optical properties of organic semiconductors, both polymers and small molecules. The text is intended to assist graduate students and researchers in the field of organic electronics to use theory to design more efficient materials for organic electronic devices such as organic solar cells, light emitting diodes and field effect transistors. After addressing some basic topics in solid state physics, a comprehensive introduction to molecular orbitals and band theory leads to a description of computational methods based on Hartree-Fock and density functional theory (DFT), for predicting geometry conformations, frontier levels and energy band structures. Topological defects and transport and optical properties are then addressed, and one of the most commonly used transparent conducting polymers, PEDOT:PSS, is described in some detail as a case study.
Printed Organic and Molecular Electronics
Author: Daniel R. Gamota
Publisher: Springer Science & Business Media
ISBN: 1441990747
Category : Technology & Engineering
Languages : en
Pages : 712
Book Description
Printed Organic And Molecular Electronics was compiled to create a reference that included existing knowledge from the most renowned industry, academic, and government experts in the fields of organic semiconductor technology, graphic arts printing, micro-contact printing, and molecular electronics. It is divided into sections that consist of the most critical topics required for one to develop a strong understanding of the states of these technologies and the paths for taking them from R&D to the hands of consumers on a massive scale. As such, the book provides both theory as well as technology development results and trends.
Publisher: Springer Science & Business Media
ISBN: 1441990747
Category : Technology & Engineering
Languages : en
Pages : 712
Book Description
Printed Organic And Molecular Electronics was compiled to create a reference that included existing knowledge from the most renowned industry, academic, and government experts in the fields of organic semiconductor technology, graphic arts printing, micro-contact printing, and molecular electronics. It is divided into sections that consist of the most critical topics required for one to develop a strong understanding of the states of these technologies and the paths for taking them from R&D to the hands of consumers on a massive scale. As such, the book provides both theory as well as technology development results and trends.
Molecular Beam Epitaxy
Author: Mohamed Henini
Publisher: Elsevier
ISBN: 0128121378
Category : Science
Languages : en
Pages : 790
Book Description
Molecular Beam Epitaxy (MBE): From Research to Mass Production, Second Edition, provides a comprehensive overview of the latest MBE research and applications in epitaxial growth, along with a detailed discussion and 'how to' on processing molecular or atomic beams that occur on the surface of a heated crystalline substrate in a vacuum. The techniques addressed in the book can be deployed wherever precise thin-film devices with enhanced and unique properties for computing, optics or photonics are required. It includes new semiconductor materials, new device structures that are commercially available, and many that are at the advanced research stage. This second edition covers the advances made by MBE, both in research and in the mass production of electronic and optoelectronic devices. Enhancements include new chapters on MBE growth of 2D materials, Si-Ge materials, AIN and GaN materials, and hybrid ferromagnet and semiconductor structures. - Condenses the fundamental science of MBE into a modern reference, speeding up literature review - Discusses new materials, novel applications and new device structures, grounding current commercial applications with modern understanding in industry and research - Includes coverage of MBE as mass production epitaxial technology and how it enhances processing efficiency and throughput for the semiconductor industry and nanostructured semiconductor materials research community
Publisher: Elsevier
ISBN: 0128121378
Category : Science
Languages : en
Pages : 790
Book Description
Molecular Beam Epitaxy (MBE): From Research to Mass Production, Second Edition, provides a comprehensive overview of the latest MBE research and applications in epitaxial growth, along with a detailed discussion and 'how to' on processing molecular or atomic beams that occur on the surface of a heated crystalline substrate in a vacuum. The techniques addressed in the book can be deployed wherever precise thin-film devices with enhanced and unique properties for computing, optics or photonics are required. It includes new semiconductor materials, new device structures that are commercially available, and many that are at the advanced research stage. This second edition covers the advances made by MBE, both in research and in the mass production of electronic and optoelectronic devices. Enhancements include new chapters on MBE growth of 2D materials, Si-Ge materials, AIN and GaN materials, and hybrid ferromagnet and semiconductor structures. - Condenses the fundamental science of MBE into a modern reference, speeding up literature review - Discusses new materials, novel applications and new device structures, grounding current commercial applications with modern understanding in industry and research - Includes coverage of MBE as mass production epitaxial technology and how it enhances processing efficiency and throughput for the semiconductor industry and nanostructured semiconductor materials research community
Molecular Technology, Volume 1
Author: Hisashi Yamamoto
Publisher: John Wiley & Sons
ISBN: 3527802789
Category : Technology & Engineering
Languages : en
Pages : 451
Book Description
Edited by foremost leaders in chemical research together with a number of distinguished international authors, this first of four volumes summarizes the most important and promising recent chemical developments in energy science all in one book. Interdisciplinary and application-oriented, this ready reference focuses on chemical methods that deliver practical solutions for energy problems, covering new developments in advanced materials for energy conversion, semiconductors and much more besides. Of great interest to chemists as well as researchers in the fields of energy science in academia and industry.
Publisher: John Wiley & Sons
ISBN: 3527802789
Category : Technology & Engineering
Languages : en
Pages : 451
Book Description
Edited by foremost leaders in chemical research together with a number of distinguished international authors, this first of four volumes summarizes the most important and promising recent chemical developments in energy science all in one book. Interdisciplinary and application-oriented, this ready reference focuses on chemical methods that deliver practical solutions for energy problems, covering new developments in advanced materials for energy conversion, semiconductors and much more besides. Of great interest to chemists as well as researchers in the fields of energy science in academia and industry.
Chemical Physics of Nanostructured Semiconductors
Author: Alexander I. Kokorin
Publisher: CRC Press
ISBN: 1498708633
Category : Science
Languages : en
Pages : 280
Book Description
Deep and detailed discussions on chemistry, chemical physics, photoelectrochemistry, photophysics, photocatalysis and possible applications of nanostructured semiconductor materials have shown increasing interest in the matter by scientists representing various research areas as well as industrial enterprises. Indeed, solar energy conversion and ch
Publisher: CRC Press
ISBN: 1498708633
Category : Science
Languages : en
Pages : 280
Book Description
Deep and detailed discussions on chemistry, chemical physics, photoelectrochemistry, photophysics, photocatalysis and possible applications of nanostructured semiconductor materials have shown increasing interest in the matter by scientists representing various research areas as well as industrial enterprises. Indeed, solar energy conversion and ch
Molecular Materials
Author: Duncan W. Bruce
Publisher: John Wiley & Sons
ISBN: 1119972957
Category : Technology & Engineering
Languages : en
Pages : 455
Book Description
“... the book does an excellent job of putting together several different classes of materials. Many common points emerge, and the book may facilitate the development of hybrids in which the qualities of the “parents” are enhanced.” –Angew. Chem. Int. Ed. 2011 With applications in optoelectronics and photonics, quantum information processing, nanotechnology and data storage, molecular materials enrich our daily lives in countless ways. These materials have properties that depend on their exact structure, the degree of order in the way the molecules are aligned and their crystalline nature. Small, delicate changes in molecular structure can totally alter the properties of the material in bulk. There has been increasing emphasis on functional metal complexes that demonstrate a wide range of physical phenomena. Molecular Materials represents the diversity of the area, encapsulating magnetic, optical and electrical properties, with chapters on: Metal-Based Quadratic Nonlinear Optical Materials Physical Properties of Metallomesogens Molecular Magnetic Materials Molecular Inorganic Conductors and Superconductors Molecular Nanomagnets Structured to include a clear introduction, a discussion of the basic concepts and up-to-date coverage of key aspects, each chapter provides a detailed review which conveys the excitement of work in that field. Additional volumes in the Inorganic Materials Series: Low-Dimensional Solids | Molecular Materials | Porous Materials | Energy Materials
Publisher: John Wiley & Sons
ISBN: 1119972957
Category : Technology & Engineering
Languages : en
Pages : 455
Book Description
“... the book does an excellent job of putting together several different classes of materials. Many common points emerge, and the book may facilitate the development of hybrids in which the qualities of the “parents” are enhanced.” –Angew. Chem. Int. Ed. 2011 With applications in optoelectronics and photonics, quantum information processing, nanotechnology and data storage, molecular materials enrich our daily lives in countless ways. These materials have properties that depend on their exact structure, the degree of order in the way the molecules are aligned and their crystalline nature. Small, delicate changes in molecular structure can totally alter the properties of the material in bulk. There has been increasing emphasis on functional metal complexes that demonstrate a wide range of physical phenomena. Molecular Materials represents the diversity of the area, encapsulating magnetic, optical and electrical properties, with chapters on: Metal-Based Quadratic Nonlinear Optical Materials Physical Properties of Metallomesogens Molecular Magnetic Materials Molecular Inorganic Conductors and Superconductors Molecular Nanomagnets Structured to include a clear introduction, a discussion of the basic concepts and up-to-date coverage of key aspects, each chapter provides a detailed review which conveys the excitement of work in that field. Additional volumes in the Inorganic Materials Series: Low-Dimensional Solids | Molecular Materials | Porous Materials | Energy Materials
Transport of Information-Carriers in Semiconductors and Nanodevices
Author: El-Saba, Muhammad
Publisher: IGI Global
ISBN: 1522523138
Category : Technology & Engineering
Languages : en
Pages : 690
Book Description
Rapid developments in technology have led to enhanced electronic systems and applications. When utilized correctly, these can have significant impacts on communication and computer systems. Transport of Information-Carriers in Semiconductors and Nanodevices is an innovative source of academic material on transport modelling in semiconductor material and nanoscale devices. Including a range of perspectives on relevant topics such as charge carriers, semiclassical transport theory, and organic semiconductors, this is an ideal publication for engineers, researchers, academics, professionals, and practitioners interested in emerging developments on transport equations that govern information carriers.
Publisher: IGI Global
ISBN: 1522523138
Category : Technology & Engineering
Languages : en
Pages : 690
Book Description
Rapid developments in technology have led to enhanced electronic systems and applications. When utilized correctly, these can have significant impacts on communication and computer systems. Transport of Information-Carriers in Semiconductors and Nanodevices is an innovative source of academic material on transport modelling in semiconductor material and nanoscale devices. Including a range of perspectives on relevant topics such as charge carriers, semiclassical transport theory, and organic semiconductors, this is an ideal publication for engineers, researchers, academics, professionals, and practitioners interested in emerging developments on transport equations that govern information carriers.
Energy and Water Development Appropriations for 2004
Author: United States. Congress. House. Committee on Appropriations. Subcommittee on Energy and Water Development
Publisher:
ISBN:
Category : Nature
Languages : en
Pages : 3132
Book Description
Publisher:
ISBN:
Category : Nature
Languages : en
Pages : 3132
Book Description