Author: Li Di
Publisher: Elsevier
ISBN: 0080557619
Category : Science
Languages : en
Pages : 549
Book Description
Of the thousands of novel compounds that a drug discovery project team invents and that bind to the therapeutic target, typically only a fraction of these have sufficient ADME/Tox properties to become a drug product. Understanding ADME/Tox is critical for all drug researchers, owing to its increasing importance in advancing high quality candidates to clinical studies and the processes of drug discovery. If the properties are weak, the candidate will have a high risk of failure or be less desirable as a drug product. This book is a tool and resource for scientists engaged in, or preparing for, the selection and optimization process. The authors describe how properties affect in vivo pharmacological activity and impact in vitro assays. Individual drug-like properties are discussed from a practical point of view, such as solubility, permeability and metabolic stability, with regard to fundamental understanding, applications of property data in drug discovery and examples of structural modifications that have achieved improved property performance. The authors also review various methods for the screening (high throughput), diagnosis (medium throughput) and in-depth (low throughput) analysis of drug properties. - Serves as an essential working handbook aimed at scientists and students in medicinal chemistry - Provides practical, step-by-step guidance on property fundamentals, effects, structure-property relationships, and structure modification strategies - Discusses improvements in pharmacokinetics from a practical chemist's standpoint
Drug-like Properties: Concepts, Structure Design and Methods
Author: Li Di
Publisher: Elsevier
ISBN: 0080557619
Category : Science
Languages : en
Pages : 549
Book Description
Of the thousands of novel compounds that a drug discovery project team invents and that bind to the therapeutic target, typically only a fraction of these have sufficient ADME/Tox properties to become a drug product. Understanding ADME/Tox is critical for all drug researchers, owing to its increasing importance in advancing high quality candidates to clinical studies and the processes of drug discovery. If the properties are weak, the candidate will have a high risk of failure or be less desirable as a drug product. This book is a tool and resource for scientists engaged in, or preparing for, the selection and optimization process. The authors describe how properties affect in vivo pharmacological activity and impact in vitro assays. Individual drug-like properties are discussed from a practical point of view, such as solubility, permeability and metabolic stability, with regard to fundamental understanding, applications of property data in drug discovery and examples of structural modifications that have achieved improved property performance. The authors also review various methods for the screening (high throughput), diagnosis (medium throughput) and in-depth (low throughput) analysis of drug properties. - Serves as an essential working handbook aimed at scientists and students in medicinal chemistry - Provides practical, step-by-step guidance on property fundamentals, effects, structure-property relationships, and structure modification strategies - Discusses improvements in pharmacokinetics from a practical chemist's standpoint
Publisher: Elsevier
ISBN: 0080557619
Category : Science
Languages : en
Pages : 549
Book Description
Of the thousands of novel compounds that a drug discovery project team invents and that bind to the therapeutic target, typically only a fraction of these have sufficient ADME/Tox properties to become a drug product. Understanding ADME/Tox is critical for all drug researchers, owing to its increasing importance in advancing high quality candidates to clinical studies and the processes of drug discovery. If the properties are weak, the candidate will have a high risk of failure or be less desirable as a drug product. This book is a tool and resource for scientists engaged in, or preparing for, the selection and optimization process. The authors describe how properties affect in vivo pharmacological activity and impact in vitro assays. Individual drug-like properties are discussed from a practical point of view, such as solubility, permeability and metabolic stability, with regard to fundamental understanding, applications of property data in drug discovery and examples of structural modifications that have achieved improved property performance. The authors also review various methods for the screening (high throughput), diagnosis (medium throughput) and in-depth (low throughput) analysis of drug properties. - Serves as an essential working handbook aimed at scientists and students in medicinal chemistry - Provides practical, step-by-step guidance on property fundamentals, effects, structure-property relationships, and structure modification strategies - Discusses improvements in pharmacokinetics from a practical chemist's standpoint
Drug Efflux Pumps in Cancer Resistance Pathways: From Molecular Recognition and Characterization to Possible Inhibition Strategies in Chemotherapy
Author:
Publisher: Academic Press
ISBN: 0128164344
Category : Business & Economics
Languages : en
Pages : 394
Book Description
Drug Efflux Pumps in Cancer Resistance Pathways: From Molecular Recognition and Characterization to Possible Inhibition Strategies in Chemotherapy, Volume Seven, describes the fundamental aspects of efflux pumps of the ATP-binding cassette superfamily in cancer resistance pathways, along with strategies to target and improve chemotherapy efficacy. Pumps of the ATP-binding cassette superfamily (ABCs) regulate the access of drugs to the intracellular space. In this context, the overexpression of ABCs is a well-known mechanism of multidrug resistance in cancer and is associated with therapeutic failure. Cancer types discussed include breast, endocrine, hematologic, gastrointestinal, musculoskeletal, lung, skin and central nervous system cancers. The book is a valuable source for researchers and advanced students in cancer, biology, pharmacology, pharmaceutical sciences, biomaterials and medical/clinical sciences that are interested in accessing a comprehensive compendium on efflux pumps in mechanisms of cancer resistance. Offers comprehensive and detailed descriptions of the basic aspects of efflux pumps in a very schematic and didactic manner Describes the involvement of efflux pumps in cancer resistance in different cancer types Encompasses an updated overview on state-of-the-art approaches that capitalize on their inhibition to improve chemotherapy and overcome resistance
Publisher: Academic Press
ISBN: 0128164344
Category : Business & Economics
Languages : en
Pages : 394
Book Description
Drug Efflux Pumps in Cancer Resistance Pathways: From Molecular Recognition and Characterization to Possible Inhibition Strategies in Chemotherapy, Volume Seven, describes the fundamental aspects of efflux pumps of the ATP-binding cassette superfamily in cancer resistance pathways, along with strategies to target and improve chemotherapy efficacy. Pumps of the ATP-binding cassette superfamily (ABCs) regulate the access of drugs to the intracellular space. In this context, the overexpression of ABCs is a well-known mechanism of multidrug resistance in cancer and is associated with therapeutic failure. Cancer types discussed include breast, endocrine, hematologic, gastrointestinal, musculoskeletal, lung, skin and central nervous system cancers. The book is a valuable source for researchers and advanced students in cancer, biology, pharmacology, pharmaceutical sciences, biomaterials and medical/clinical sciences that are interested in accessing a comprehensive compendium on efflux pumps in mechanisms of cancer resistance. Offers comprehensive and detailed descriptions of the basic aspects of efflux pumps in a very schematic and didactic manner Describes the involvement of efflux pumps in cancer resistance in different cancer types Encompasses an updated overview on state-of-the-art approaches that capitalize on their inhibition to improve chemotherapy and overcome resistance
The Molecular Theory of Gases and Liquids
Author: Joseph O. Hirschfelder
Publisher: John Wiley & Sons
ISBN: 0471400653
Category : Science
Languages : en
Pages : 1283
Book Description
An essential cross-disciplinary reference for molecular interactions Molecular Theory of Gases and Liquids offers a rigorous, comprehensive treatment of molecular characteristics and behaviors in the gaseous and fluid states. A unique cross-disciplinary approach provides useful insight for students of chemistry, chemical engineering, fluid dynamics, and a variety of related fields, with thorough derivations and in-depth explanations throughout. Appropriate for graduate students and working scientists alike, this book details advanced concepts without sacrificing depth of coverage or technical detail.
Publisher: John Wiley & Sons
ISBN: 0471400653
Category : Science
Languages : en
Pages : 1283
Book Description
An essential cross-disciplinary reference for molecular interactions Molecular Theory of Gases and Liquids offers a rigorous, comprehensive treatment of molecular characteristics and behaviors in the gaseous and fluid states. A unique cross-disciplinary approach provides useful insight for students of chemistry, chemical engineering, fluid dynamics, and a variety of related fields, with thorough derivations and in-depth explanations throughout. Appropriate for graduate students and working scientists alike, this book details advanced concepts without sacrificing depth of coverage or technical detail.
Molecular Modeling in Drug Design
Author: Rebecca Wade
Publisher: MDPI
ISBN: 3038976148
Category : Science
Languages : en
Pages : 220
Book Description
Since the first attempts at structure-based drug design about four decades ago, molecular modelling techniques for drug design have developed enormously, along with the increasing computational power and structural and biological information of active compounds and potential target molecules. Nowadays, molecular modeling can be considered to be an integral component of the modern drug discovery and development toolbox. Nevertheless, there are still many methodological challenges to be overcome in the application of molecular modeling approaches to drug discovery. The eight original research and five review articles collected in this book provide a snapshot of the state-of-the-art of molecular modeling in drug design, illustrating recent advances and critically discussing important challenges. The topics covered include virtual screening and pharmacophore modelling, chemoinformatic applications of artificial intelligence and machine learning, molecular dynamics simulation and enhanced sampling to investigate contributions of molecular flexibility to drug–receptor interactions, the modeling of drug–receptor solvation, hydrogen bonding and polarization, and drug design against protein–protein interfaces and membrane protein receptors.
Publisher: MDPI
ISBN: 3038976148
Category : Science
Languages : en
Pages : 220
Book Description
Since the first attempts at structure-based drug design about four decades ago, molecular modelling techniques for drug design have developed enormously, along with the increasing computational power and structural and biological information of active compounds and potential target molecules. Nowadays, molecular modeling can be considered to be an integral component of the modern drug discovery and development toolbox. Nevertheless, there are still many methodological challenges to be overcome in the application of molecular modeling approaches to drug discovery. The eight original research and five review articles collected in this book provide a snapshot of the state-of-the-art of molecular modeling in drug design, illustrating recent advances and critically discussing important challenges. The topics covered include virtual screening and pharmacophore modelling, chemoinformatic applications of artificial intelligence and machine learning, molecular dynamics simulation and enhanced sampling to investigate contributions of molecular flexibility to drug–receptor interactions, the modeling of drug–receptor solvation, hydrogen bonding and polarization, and drug design against protein–protein interfaces and membrane protein receptors.
Textbook of Drug Design and Discovery, Third Edition
Author: Tommy Liljefors
Publisher: CRC Press
ISBN: 9780415282888
Category : Medical
Languages : en
Pages : 596
Book Description
Building on the success of the previous editions, Textbook of Drug Design and Discovery has been thoroughly revised and updated to provide a complete source of information on all facets of drug design and discovery for students of chemistry, pharmacy, pharmacology, biochemistry, and medicine. The book follows drug design from the initial lead identification through optimization and structure-activity relationship with reference to the final processes of clinical evaluation and registration. Chapters investigate the design of enzyme inhibitors and drugs for particular cellular targets such as ion channels and receptors, and also explore specific classes of drug such as peptidomimetics, antivirals and anticancer agents. The use of gene technology in pharmaceutical research, computer modeling techniques, and combinatorial approaches are also included.
Publisher: CRC Press
ISBN: 9780415282888
Category : Medical
Languages : en
Pages : 596
Book Description
Building on the success of the previous editions, Textbook of Drug Design and Discovery has been thoroughly revised and updated to provide a complete source of information on all facets of drug design and discovery for students of chemistry, pharmacy, pharmacology, biochemistry, and medicine. The book follows drug design from the initial lead identification through optimization and structure-activity relationship with reference to the final processes of clinical evaluation and registration. Chapters investigate the design of enzyme inhibitors and drugs for particular cellular targets such as ion channels and receptors, and also explore specific classes of drug such as peptidomimetics, antivirals and anticancer agents. The use of gene technology in pharmaceutical research, computer modeling techniques, and combinatorial approaches are also included.
The History of Cyclodextrins
Author: Grégorio Crini
Publisher: Springer Nature
ISBN: 3030493083
Category : Science
Languages : en
Pages : 409
Book Description
This book presents the historical development of Cyclodextrins by scientists who have made outstanding contribution to the field. Cyclodextrins are safe, cage-like molecules that have found major applications in many industrial sectors such as medicine, food, agriculture, environment and chemistry.
Publisher: Springer Nature
ISBN: 3030493083
Category : Science
Languages : en
Pages : 409
Book Description
This book presents the historical development of Cyclodextrins by scientists who have made outstanding contribution to the field. Cyclodextrins are safe, cage-like molecules that have found major applications in many industrial sectors such as medicine, food, agriculture, environment and chemistry.
Dynamic Combinatorial Chemistry
Author: Benjamin L. Miller
Publisher: John Wiley & Sons
ISBN: 9780470551547
Category : Science
Languages : en
Pages : 280
Book Description
Effective techniques for applying Dynamic Combinatorial Chemistry In a relatively short period, Dynamic Combinatorial Chemistry (DCC) has grown from proof-of-concept experiments in a few isolated labs to a broad conceptual framework with applications to an exceptional range of problems in molecular recognition, lead compound identification, catalyst design, nanotechnology, polymer science, and others. Bringing together a group of respected experts, this overview explains how chemists can apply DCC and fragment-based library methods to lead generation for drug discovery and molecular recognition in bioorganic chemistry and materials science. Chapters cover: Basic theory Approaches to binding in proteins and nucleic acids Molecular recognition Self-sorting Catalyst discovery Materials discovery Analytical chemistry challenges A comprehensive, single-source reference about DCC methods and applications including aspects of fragment-based drug discovery, this is a core reference that will spark the development of new solutions and strategies for chemists building structure libraries and designing compounds and materials.
Publisher: John Wiley & Sons
ISBN: 9780470551547
Category : Science
Languages : en
Pages : 280
Book Description
Effective techniques for applying Dynamic Combinatorial Chemistry In a relatively short period, Dynamic Combinatorial Chemistry (DCC) has grown from proof-of-concept experiments in a few isolated labs to a broad conceptual framework with applications to an exceptional range of problems in molecular recognition, lead compound identification, catalyst design, nanotechnology, polymer science, and others. Bringing together a group of respected experts, this overview explains how chemists can apply DCC and fragment-based library methods to lead generation for drug discovery and molecular recognition in bioorganic chemistry and materials science. Chapters cover: Basic theory Approaches to binding in proteins and nucleic acids Molecular recognition Self-sorting Catalyst discovery Materials discovery Analytical chemistry challenges A comprehensive, single-source reference about DCC methods and applications including aspects of fragment-based drug discovery, this is a core reference that will spark the development of new solutions and strategies for chemists building structure libraries and designing compounds and materials.
Protein-protein Complexes
Author: Martin Zacharias
Publisher: World Scientific
ISBN: 184816338X
Category : Science
Languages : en
Pages : 401
Book Description
Given the immense progress achieved in elucidating protein-protein complex structures and in the field of protein interaction modeling, there is great demand for a book that gives interested researchers/students a comprehensive overview of the field. This book does just that. It focuses on what can be learned about protein-protein interactions from the analysis of protein-protein complex structures and interfaces. What are the driving forces for protein-protein association? How can we extract the mechanism of specific recognition from studying protein-protein interfaces? How can this knowledge be used to predict and design protein-protein interactions (interaction regions and complex structures)? What methods are currently employed to design protein-protein interactions, and how can we influence protein-protein interactions by mutagenesis and small-molecule drugs or peptide mimetics?The book consists of about 15 review chapters, written by experts, on the characterization of protein-protein interfaces, structure determination of protein complexes (by NMR and X-ray), theory of protein-protein binding, dynamics of protein interfaces, bioinformatics methods to predict interaction regions, and prediction of protein-protein complex structures (docking and homology modeling of complexes, etc.) and design of protein-protein interactions. It serves as a bridge between studying/analyzing protein-protein complex structures (interfaces), predicting interactions, and influencing/designing interactions.
Publisher: World Scientific
ISBN: 184816338X
Category : Science
Languages : en
Pages : 401
Book Description
Given the immense progress achieved in elucidating protein-protein complex structures and in the field of protein interaction modeling, there is great demand for a book that gives interested researchers/students a comprehensive overview of the field. This book does just that. It focuses on what can be learned about protein-protein interactions from the analysis of protein-protein complex structures and interfaces. What are the driving forces for protein-protein association? How can we extract the mechanism of specific recognition from studying protein-protein interfaces? How can this knowledge be used to predict and design protein-protein interactions (interaction regions and complex structures)? What methods are currently employed to design protein-protein interactions, and how can we influence protein-protein interactions by mutagenesis and small-molecule drugs or peptide mimetics?The book consists of about 15 review chapters, written by experts, on the characterization of protein-protein interfaces, structure determination of protein complexes (by NMR and X-ray), theory of protein-protein binding, dynamics of protein interfaces, bioinformatics methods to predict interaction regions, and prediction of protein-protein complex structures (docking and homology modeling of complexes, etc.) and design of protein-protein interactions. It serves as a bridge between studying/analyzing protein-protein complex structures (interfaces), predicting interactions, and influencing/designing interactions.
Spectroscopy and Modeling of Biomolecular Building Blocks
Author: Jean-Pierre Schermann
Publisher: Elsevier
ISBN: 0080558224
Category : Science
Languages : en
Pages : 499
Book Description
Spectroscopy and Modeling of Biomolecular Building Blocks presents an overview of recent advances in the intertwining of the following research fields: photon and electron spectroscopy, quantum chemistry, modelling and mass-spectrometry. The coupling of these disciplines offers a new point of view to the understanding of isolated elementary building blocks of biomolecules and their assemblies. It allows the unambiguous separation between intrinsic properties of biomolecular systems and those induced by the presence of their environment. The first chapters provide background in modelling (I), frequency-resolved spectroscopy using microwave, infrared and UV photons, time-resolved spectroscopy in the femtosecond domain and energy-resolved electron spectroscopy (II) and production of gas-phase neutral and ionic biomolecular species, mass-spectrometry, ion mobility and BIRD techniques (III). Chapter IV is devoted to case studies of gas-phase experimental investigations coupled to quantum or classical calculations. The topics are structural studies of nucleobases and oligonucleotides, peptides and proteins, sugars; neuromolecules; non-covalent complexes; chiral systems, interactions of low-energy electrons with biomolecules in the radiation chemistry context and very large gas-phase biomolecular systems. The fifth chapter concerns the link between gas-phase and liquid-phase. Different treatments of solvation are illustrated through examples pointing out the influence of progressive addition of water molecules upon properties of nucleobases, peptides, sugars and neuromolecules. - Offer a new perspective to the understanding of isolated elementary building blocks of bio molecules - Includes case studies of experimental investigations coupled to quantum or classical calculations
Publisher: Elsevier
ISBN: 0080558224
Category : Science
Languages : en
Pages : 499
Book Description
Spectroscopy and Modeling of Biomolecular Building Blocks presents an overview of recent advances in the intertwining of the following research fields: photon and electron spectroscopy, quantum chemistry, modelling and mass-spectrometry. The coupling of these disciplines offers a new point of view to the understanding of isolated elementary building blocks of biomolecules and their assemblies. It allows the unambiguous separation between intrinsic properties of biomolecular systems and those induced by the presence of their environment. The first chapters provide background in modelling (I), frequency-resolved spectroscopy using microwave, infrared and UV photons, time-resolved spectroscopy in the femtosecond domain and energy-resolved electron spectroscopy (II) and production of gas-phase neutral and ionic biomolecular species, mass-spectrometry, ion mobility and BIRD techniques (III). Chapter IV is devoted to case studies of gas-phase experimental investigations coupled to quantum or classical calculations. The topics are structural studies of nucleobases and oligonucleotides, peptides and proteins, sugars; neuromolecules; non-covalent complexes; chiral systems, interactions of low-energy electrons with biomolecules in the radiation chemistry context and very large gas-phase biomolecular systems. The fifth chapter concerns the link between gas-phase and liquid-phase. Different treatments of solvation are illustrated through examples pointing out the influence of progressive addition of water molecules upon properties of nucleobases, peptides, sugars and neuromolecules. - Offer a new perspective to the understanding of isolated elementary building blocks of bio molecules - Includes case studies of experimental investigations coupled to quantum or classical calculations
Allosterism in Drug Discovery
Author: Dario Doller
Publisher: Royal Society of Chemistry
ISBN: 1782629270
Category : Medical
Languages : en
Pages : 458
Book Description
Although the concept of allosterism has been known for over half a century, its application in drug discovery has exploded in recent years. The emergence of novel technologies that enable molecular-level ligand-receptor interactions to be studied in studied in unprecedented detail has driven this trend. This book, written by the leaders in this young research area, describes the latest developments in allosterism for drug discovery. Bringing together research in a diverse range of scientific disciplines, Allosterism in Drug Discovery is a key reference for academics and industrialists interested in understanding allosteric interactions. The book provides an in-depth review of research using small molecules as chemical probes and drug candidates that interact allosterically with proteins of relevance to life sciences and human disease. Knowledge of these interactions can then be applied in the discovery of the novel therapeutics of the future. This book will be useful for people working in all disciplines associated with drug discovery in academia or industry, as well as postgraduate students who may be working in the design of allosteric modulators.
Publisher: Royal Society of Chemistry
ISBN: 1782629270
Category : Medical
Languages : en
Pages : 458
Book Description
Although the concept of allosterism has been known for over half a century, its application in drug discovery has exploded in recent years. The emergence of novel technologies that enable molecular-level ligand-receptor interactions to be studied in studied in unprecedented detail has driven this trend. This book, written by the leaders in this young research area, describes the latest developments in allosterism for drug discovery. Bringing together research in a diverse range of scientific disciplines, Allosterism in Drug Discovery is a key reference for academics and industrialists interested in understanding allosteric interactions. The book provides an in-depth review of research using small molecules as chemical probes and drug candidates that interact allosterically with proteins of relevance to life sciences and human disease. Knowledge of these interactions can then be applied in the discovery of the novel therapeutics of the future. This book will be useful for people working in all disciplines associated with drug discovery in academia or industry, as well as postgraduate students who may be working in the design of allosteric modulators.