Author: W. Miller
Publisher: Springer Science & Business Media
ISBN: 1475706448
Category : Science
Languages : en
Pages : 391
Book Description
Activity in any theoretical area is usually stimulated by new experimental techniques and the resulting opportunity of measuring phenomena that were previously inaccessible. Such has been the case in the area under consideration he re beginning about fifteen years aga when the possibility of studying chemical reactions in crossed molecular beams captured the imagination of physical chemists, for one could imagine investigating chemical kinetics at the same level of molecular detail that had previously been possible only in spectroscopic investigations of molecular stucture. This created an interest among chemists in scattering theory, the molecular level description of a bimolecular collision process. Many other new and also powerful experimental techniques have evolved to supplement the molecular be am method, and the resulting wealth of new information about chemical dynamics has generated the present intense activity in molecular collision theory. During the early years when chemists were first becoming acquainted with scattering theory, it was mainly a matter of reading the physics literature because scattering experiments have long been the staple of that field. It was natural to apply the approximations and models that had been developed for nuclear and elementary particle physics, and although some of them were useful in describing molecular collision phenomena, many were not.
Dynamics of Molecular Collisions
Author: W. Miller
Publisher: Springer Science & Business Media
ISBN: 1475706448
Category : Science
Languages : en
Pages : 391
Book Description
Activity in any theoretical area is usually stimulated by new experimental techniques and the resulting opportunity of measuring phenomena that were previously inaccessible. Such has been the case in the area under consideration he re beginning about fifteen years aga when the possibility of studying chemical reactions in crossed molecular beams captured the imagination of physical chemists, for one could imagine investigating chemical kinetics at the same level of molecular detail that had previously been possible only in spectroscopic investigations of molecular stucture. This created an interest among chemists in scattering theory, the molecular level description of a bimolecular collision process. Many other new and also powerful experimental techniques have evolved to supplement the molecular be am method, and the resulting wealth of new information about chemical dynamics has generated the present intense activity in molecular collision theory. During the early years when chemists were first becoming acquainted with scattering theory, it was mainly a matter of reading the physics literature because scattering experiments have long been the staple of that field. It was natural to apply the approximations and models that had been developed for nuclear and elementary particle physics, and although some of them were useful in describing molecular collision phenomena, many were not.
Publisher: Springer Science & Business Media
ISBN: 1475706448
Category : Science
Languages : en
Pages : 391
Book Description
Activity in any theoretical area is usually stimulated by new experimental techniques and the resulting opportunity of measuring phenomena that were previously inaccessible. Such has been the case in the area under consideration he re beginning about fifteen years aga when the possibility of studying chemical reactions in crossed molecular beams captured the imagination of physical chemists, for one could imagine investigating chemical kinetics at the same level of molecular detail that had previously been possible only in spectroscopic investigations of molecular stucture. This created an interest among chemists in scattering theory, the molecular level description of a bimolecular collision process. Many other new and also powerful experimental techniques have evolved to supplement the molecular be am method, and the resulting wealth of new information about chemical dynamics has generated the present intense activity in molecular collision theory. During the early years when chemists were first becoming acquainted with scattering theory, it was mainly a matter of reading the physics literature because scattering experiments have long been the staple of that field. It was natural to apply the approximations and models that had been developed for nuclear and elementary particle physics, and although some of them were useful in describing molecular collision phenomena, many were not.
Atom - Molecule Collision Theory
Author: Richard Barry Bernstein
Publisher: Springer Science & Business Media
ISBN: 1461329132
Category : Science
Languages : en
Pages : 785
Book Description
The broad field of molecular collisions is one of considerable current interest, one in which there is a great deal of research activity, both experi mental and theoretical. This is probably because elastic, inelastic, and reactive intermolecular collisions are of central importance in many of the fundamental processes of chemistry and physics. One small area of this field, namely atom-molecule collisions, is now beginning to be "understood" from first principles. Although the more general subject of the collisions of polyatomic molecules is of great im portance and intrinsic interest, it is still too complex from the viewpoint of theoretical understanding. However, for atoms and simple molecules the essential theory is well developed, and computational methods are sufficiently advanced that calculations can now be favorably compared with experimental results. This "coming together" of the subject (and, incidentally, of physicists and chemists !), though still in an early stage, signals that the time is ripe for an appraisal and review of the theoretical basis of atom-molecule collisions. It is especially important for the experimentalist in the field to have a working knowledge of the theory and computational methods required to describe the experimentally observable behavior of the system. By now many of the alternative theoretical approaches and computational procedures have been tested and intercompared. More-or-Iess optimal methods for dealing with each aspect are emerging. In many cases working equations, even schematic algorithms, have been developed, with assumptions and caveats delineated.
Publisher: Springer Science & Business Media
ISBN: 1461329132
Category : Science
Languages : en
Pages : 785
Book Description
The broad field of molecular collisions is one of considerable current interest, one in which there is a great deal of research activity, both experi mental and theoretical. This is probably because elastic, inelastic, and reactive intermolecular collisions are of central importance in many of the fundamental processes of chemistry and physics. One small area of this field, namely atom-molecule collisions, is now beginning to be "understood" from first principles. Although the more general subject of the collisions of polyatomic molecules is of great im portance and intrinsic interest, it is still too complex from the viewpoint of theoretical understanding. However, for atoms and simple molecules the essential theory is well developed, and computational methods are sufficiently advanced that calculations can now be favorably compared with experimental results. This "coming together" of the subject (and, incidentally, of physicists and chemists !), though still in an early stage, signals that the time is ripe for an appraisal and review of the theoretical basis of atom-molecule collisions. It is especially important for the experimentalist in the field to have a working knowledge of the theory and computational methods required to describe the experimentally observable behavior of the system. By now many of the alternative theoretical approaches and computational procedures have been tested and intercompared. More-or-Iess optimal methods for dealing with each aspect are emerging. In many cases working equations, even schematic algorithms, have been developed, with assumptions and caveats delineated.
The Handbook of Surface Imaging and Visualization
Author: Arthur T. Hubbard
Publisher: CRC Press
ISBN: 9780849389115
Category : Science
Languages : en
Pages : 950
Book Description
This exciting new handbook investigates the characterization of surfaces. It emphasizes experimental techniques for imaging of solid surfaces and theoretical strategies for visualization of surfaces, areas in which rapid progress is currently being made. This comprehensive, unique volume is the ideal reference for researchers needing quick access to the latest developments in the field and an excellent introduction to students who want to acquaint themselves with the behavior of electrons, atoms, molecules, and thin-films at surfaces. It's all here, under one cover! The Handbook of Surface Imaging and Visualization is filled with sixty-four of the most powerful techniques for characterization of surfaces and interfaces in the material sciences, medicine, biology, geology, chemistry, and physics. Each discussion is easy to understand, succinct, yet incredibly informative. Data illustrate present research in each area of study. A wide variety of the latest experimental and theoretical approaches are included with both practical and fundamental objectives in mind. Key references are included for the reader's convenience for locating the most recent and useful work on each topic. Readers are encouraged to contact the authors or consult the references for additional information. This is the best ready reference available today. It is a perfect source book or supplemental text on the subject.
Publisher: CRC Press
ISBN: 9780849389115
Category : Science
Languages : en
Pages : 950
Book Description
This exciting new handbook investigates the characterization of surfaces. It emphasizes experimental techniques for imaging of solid surfaces and theoretical strategies for visualization of surfaces, areas in which rapid progress is currently being made. This comprehensive, unique volume is the ideal reference for researchers needing quick access to the latest developments in the field and an excellent introduction to students who want to acquaint themselves with the behavior of electrons, atoms, molecules, and thin-films at surfaces. It's all here, under one cover! The Handbook of Surface Imaging and Visualization is filled with sixty-four of the most powerful techniques for characterization of surfaces and interfaces in the material sciences, medicine, biology, geology, chemistry, and physics. Each discussion is easy to understand, succinct, yet incredibly informative. Data illustrate present research in each area of study. A wide variety of the latest experimental and theoretical approaches are included with both practical and fundamental objectives in mind. Key references are included for the reader's convenience for locating the most recent and useful work on each topic. Readers are encouraged to contact the authors or consult the references for additional information. This is the best ready reference available today. It is a perfect source book or supplemental text on the subject.
Photon and Electron Collisions with Atoms and Molecules
Author: Philip G. Burke
Publisher: Springer Science & Business Media
ISBN: 1461559170
Category : Science
Languages : en
Pages : 384
Book Description
Research on photon and electron collisions with atomic and molecular targets and their ions has seen a rapid increase in interest, both experimentally and theoretically, in recent years. This is partly because these processes provide an ideal means of investigating the dynamics of many particle systems at a fundamental level and partly because their detailed understanding is required in many other fields, particularly astrophysics, plasma physics and controlled thermonuclear fusion, laser physics, atmospheric processes, isotope separation, radiation physics and chemistry and surface science. In recent years a number of important advances have been made, both on the experimental side and on the theoretical side. On the experimental side these include absolute measurements of cross sections, experiments using coincidence techniques, the use of polarised beams and targets, the development of very high energy resolution electron beams, the use of synchrotron radiation sources and ion storage rings, the study of laser assisted atomic collisions, the interaction of super-intense lasers with atoms and molecules and the increasing number of studies using positron beams.
Publisher: Springer Science & Business Media
ISBN: 1461559170
Category : Science
Languages : en
Pages : 384
Book Description
Research on photon and electron collisions with atomic and molecular targets and their ions has seen a rapid increase in interest, both experimentally and theoretically, in recent years. This is partly because these processes provide an ideal means of investigating the dynamics of many particle systems at a fundamental level and partly because their detailed understanding is required in many other fields, particularly astrophysics, plasma physics and controlled thermonuclear fusion, laser physics, atmospheric processes, isotope separation, radiation physics and chemistry and surface science. In recent years a number of important advances have been made, both on the experimental side and on the theoretical side. On the experimental side these include absolute measurements of cross sections, experiments using coincidence techniques, the use of polarised beams and targets, the development of very high energy resolution electron beams, the use of synchrotron radiation sources and ion storage rings, the study of laser assisted atomic collisions, the interaction of super-intense lasers with atoms and molecules and the increasing number of studies using positron beams.
Dynamics of Gas-Surface Interactions
Author: Ricardo Diez Muino
Publisher: Springer Science & Business Media
ISBN: 3642329551
Category : Science
Languages : en
Pages : 439
Book Description
This book gives a representative survey of the state of the art of research on gas-surface interactions. It provides an overview of the current understanding of gas surface dynamics and, in particular, of the reactive and non-reactive processes of atoms and small molecules at surfaces. Leading scientists in the field, both from the theoretical and the experimental sides, write in this book about their most recent advances. Surface science grew as an interdisciplinary research area over the last decades, mostly because of new experimental technologies (ultra-high vacuum, for instance), as well as because of a novel paradigm, the ‘surface science’ approach. The book describes the second transformation which is now taking place pushed by the availability of powerful quantum-mechanical theoretical methods implemented numerically. In the book, experiment and theory progress hand in hand with an unprecedented degree of accuracy and control. The book presents how modern surface science targets the atomic-level understanding of physical and chemical processes at surfaces, with particular emphasis on dynamical aspects. This book is a reference in the field.
Publisher: Springer Science & Business Media
ISBN: 3642329551
Category : Science
Languages : en
Pages : 439
Book Description
This book gives a representative survey of the state of the art of research on gas-surface interactions. It provides an overview of the current understanding of gas surface dynamics and, in particular, of the reactive and non-reactive processes of atoms and small molecules at surfaces. Leading scientists in the field, both from the theoretical and the experimental sides, write in this book about their most recent advances. Surface science grew as an interdisciplinary research area over the last decades, mostly because of new experimental technologies (ultra-high vacuum, for instance), as well as because of a novel paradigm, the ‘surface science’ approach. The book describes the second transformation which is now taking place pushed by the availability of powerful quantum-mechanical theoretical methods implemented numerically. In the book, experiment and theory progress hand in hand with an unprecedented degree of accuracy and control. The book presents how modern surface science targets the atomic-level understanding of physical and chemical processes at surfaces, with particular emphasis on dynamical aspects. This book is a reference in the field.
Nuclear Science Abstracts
Author:
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 658
Book Description
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 658
Book Description
Case Studies in Atomic Collision Physics
Author: E. W. McDaniel
Publisher: Elsevier
ISBN: 1483277968
Category : Science
Languages : en
Pages : 664
Book Description
Case Studies in Atomic Collision Physics II focuses on studies on the role of atomic collision processes in astrophysical plasmas, including ionic recombination, electron transport, and position scattering. The book first discusses three-body recombination of positive and negative ions, as well as introduction to ionic recombination, calculation of the recombination coefficient, ions recombining in their parent gas, and three-body recombination at moderate and high gas-densities. The manuscript also takes a look at precision measurements of electron transport coefficients and differential cross sections in electron impact ionization. The publication examines the interpretation of spectral intensities from laboratory and astrophysical plasmas, atomic processes in astrophysical plasmas, and polarized orbital approximations. Discussions focus on collision rate experiments, line spectrum, collisional excitation and ionization, polarized target wave function, and application to positron scattering and annihilation. The text also ponders on cross sections and electron affinities and the role of metastable particles in collision processes. The selection is a valuable source of data for physicists and readers interested in atomic collision.
Publisher: Elsevier
ISBN: 1483277968
Category : Science
Languages : en
Pages : 664
Book Description
Case Studies in Atomic Collision Physics II focuses on studies on the role of atomic collision processes in astrophysical plasmas, including ionic recombination, electron transport, and position scattering. The book first discusses three-body recombination of positive and negative ions, as well as introduction to ionic recombination, calculation of the recombination coefficient, ions recombining in their parent gas, and three-body recombination at moderate and high gas-densities. The manuscript also takes a look at precision measurements of electron transport coefficients and differential cross sections in electron impact ionization. The publication examines the interpretation of spectral intensities from laboratory and astrophysical plasmas, atomic processes in astrophysical plasmas, and polarized orbital approximations. Discussions focus on collision rate experiments, line spectrum, collisional excitation and ionization, polarized target wave function, and application to positron scattering and annihilation. The text also ponders on cross sections and electron affinities and the role of metastable particles in collision processes. The selection is a valuable source of data for physicists and readers interested in atomic collision.
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 702
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 702
Book Description
Inventory of advanced energy technologies and energy conservation research and development, 1976-1978
Author: Oak Ridge National Laboratory
Publisher:
ISBN:
Category : Energy conservation
Languages : en
Pages : 2238
Book Description
Publisher:
ISBN:
Category : Energy conservation
Languages : en
Pages : 2238
Book Description
Inelastic Particle-Surface Collisions
Author: E. Taglauer
Publisher: Springer Science & Business Media
ISBN: 3642870651
Category : Science
Languages : en
Pages : 337
Book Description
The interaction of particles and photons with solid surfaces is interdisci plinary in character, so that very recent developments in solid-state phys ics, surface physics and atomic physics stimulate progress in the field or profit from results of the "ion-solid" community. Technical interest in the field ranges from catalysis and semiconductor manufacturing to fusion re search, for instance by surface analytical techniques, or interest in phenom ena such as sputtering and radiation damage. The Third International Workshop on Inelastic Ion-Surface Coll isions, held at Feldkirchen-Westerham under the auspices of Max-Planck-Institut fUr Plasmaphysik, Garching, Fed. Rep. of Germany, brought together 63 scientists from 12 countries for three days of very involved discussions. As at the pre vious workshops at Bell Laboratories in 1976 and McMaster University in 1978, the experiment of gathering experts from seemingly different disciplines was very successful in promoting the basic physical ideas. The proceedings contain the 14 major reviews and a smaller number of con tributions presented at the workshop. All papers have been reviewed with little delay, and the reviewer's efforts are gratefully acknowledged. The first group of papers is concerned with theoretical and experimental aspects of secondary electron emission due to ion impact, including the potential emission caused by slow metastables. This is followed by reviews of exper iments and recent theoretical developments of electron- and photon-induced desorption.
Publisher: Springer Science & Business Media
ISBN: 3642870651
Category : Science
Languages : en
Pages : 337
Book Description
The interaction of particles and photons with solid surfaces is interdisci plinary in character, so that very recent developments in solid-state phys ics, surface physics and atomic physics stimulate progress in the field or profit from results of the "ion-solid" community. Technical interest in the field ranges from catalysis and semiconductor manufacturing to fusion re search, for instance by surface analytical techniques, or interest in phenom ena such as sputtering and radiation damage. The Third International Workshop on Inelastic Ion-Surface Coll isions, held at Feldkirchen-Westerham under the auspices of Max-Planck-Institut fUr Plasmaphysik, Garching, Fed. Rep. of Germany, brought together 63 scientists from 12 countries for three days of very involved discussions. As at the pre vious workshops at Bell Laboratories in 1976 and McMaster University in 1978, the experiment of gathering experts from seemingly different disciplines was very successful in promoting the basic physical ideas. The proceedings contain the 14 major reviews and a smaller number of con tributions presented at the workshop. All papers have been reviewed with little delay, and the reviewer's efforts are gratefully acknowledged. The first group of papers is concerned with theoretical and experimental aspects of secondary electron emission due to ion impact, including the potential emission caused by slow metastables. This is followed by reviews of exper iments and recent theoretical developments of electron- and photon-induced desorption.