Author: Tomasz Brzezinski
Publisher: Springer Science & Business Media
ISBN: 3764387424
Category : Mathematics
Languages : en
Pages : 355
Book Description
The 23 articles in this volume encompass the proceedings of the International Conference on Modules and Comodules held in Porto (Portugal) in 2006. The conference was dedicated to Robert Wisbauer on the occasion of his 65th birthday. These articles reflect Professor Wisbauer's wide interests and give an overview of different fields related to module theory. While some of these fields have a long tradition, others represented here have emerged in recent years.
Modules and Comodules
Author: Tomasz Brzezinski
Publisher: Springer Science & Business Media
ISBN: 3764387424
Category : Mathematics
Languages : en
Pages : 355
Book Description
The 23 articles in this volume encompass the proceedings of the International Conference on Modules and Comodules held in Porto (Portugal) in 2006. The conference was dedicated to Robert Wisbauer on the occasion of his 65th birthday. These articles reflect Professor Wisbauer's wide interests and give an overview of different fields related to module theory. While some of these fields have a long tradition, others represented here have emerged in recent years.
Publisher: Springer Science & Business Media
ISBN: 3764387424
Category : Mathematics
Languages : en
Pages : 355
Book Description
The 23 articles in this volume encompass the proceedings of the International Conference on Modules and Comodules held in Porto (Portugal) in 2006. The conference was dedicated to Robert Wisbauer on the occasion of his 65th birthday. These articles reflect Professor Wisbauer's wide interests and give an overview of different fields related to module theory. While some of these fields have a long tradition, others represented here have emerged in recent years.
Two Kinds of Derived Categories, Koszul Duality, and Comodule-Contramodule Correspondence
Author: Leonid Positselski
Publisher: American Mathematical Soc.
ISBN: 0821852965
Category : Mathematics
Languages : en
Pages : 146
Book Description
"July 2011, volume 212, number 996 (first of 4 numbers)."
Publisher: American Mathematical Soc.
ISBN: 0821852965
Category : Mathematics
Languages : en
Pages : 146
Book Description
"July 2011, volume 212, number 996 (first of 4 numbers)."
Corings and Comodules
Author: Tomasz Brzezinski
Publisher: Cambridge University Press
ISBN: 9780521539319
Category : Mathematics
Languages : en
Pages : 492
Book Description
This is the first extensive treatment of the theory of corings and their comodules. In the first part, the module-theoretic aspects of coalgebras over commutative rings are described. Corings are then defined as coalgebras over non-commutative rings. Topics covered include module-theoretic aspects of corings, such as the relation of comodules to special subcategories of the category of modules (sigma-type categories), connections between corings and extensions of rings, properties of new examples of corings associated to entwining structures, generalisations of bialgebras such as bialgebroids and weak bialgebras, and the appearance of corings in non-commutative geometry.
Publisher: Cambridge University Press
ISBN: 9780521539319
Category : Mathematics
Languages : en
Pages : 492
Book Description
This is the first extensive treatment of the theory of corings and their comodules. In the first part, the module-theoretic aspects of coalgebras over commutative rings are described. Corings are then defined as coalgebras over non-commutative rings. Topics covered include module-theoretic aspects of corings, such as the relation of comodules to special subcategories of the category of modules (sigma-type categories), connections between corings and extensions of rings, properties of new examples of corings associated to entwining structures, generalisations of bialgebras such as bialgebroids and weak bialgebras, and the appearance of corings in non-commutative geometry.
Tensor Categories
Author: Pavel Etingof
Publisher: American Mathematical Soc.
ISBN: 1470434415
Category : Mathematics
Languages : en
Pages : 362
Book Description
Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.
Publisher: American Mathematical Soc.
ISBN: 1470434415
Category : Mathematics
Languages : en
Pages : 362
Book Description
Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.
Modules and Rings
Author: John Dauns
Publisher: Cambridge University Press
ISBN: 0521462584
Category : Mathematics
Languages : en
Pages : 470
Book Description
This book on modern module and non-commutative ring theory is ideal for beginning graduate students. It starts at the foundations of the subject and progresses rapidly through the basic concepts to help the reader reach current research frontiers. Students will have the chance to develop proofs, solve problems, and to find interesting questions. The first half of the book is concerned with free, projective, and injective modules, tensor algebras, simple modules and primitive rings, the Jacobson radical, and subdirect products. Later in the book, more advanced topics, such as hereditary rings, categories and functors, flat modules, and purity are introduced. These later chapters will also prove a useful reference for researchers in non-commutative ring theory. Enough background material (including detailed proofs) is supplied to give the student a firm grounding in the subject.
Publisher: Cambridge University Press
ISBN: 0521462584
Category : Mathematics
Languages : en
Pages : 470
Book Description
This book on modern module and non-commutative ring theory is ideal for beginning graduate students. It starts at the foundations of the subject and progresses rapidly through the basic concepts to help the reader reach current research frontiers. Students will have the chance to develop proofs, solve problems, and to find interesting questions. The first half of the book is concerned with free, projective, and injective modules, tensor algebras, simple modules and primitive rings, the Jacobson radical, and subdirect products. Later in the book, more advanced topics, such as hereditary rings, categories and functors, flat modules, and purity are introduced. These later chapters will also prove a useful reference for researchers in non-commutative ring theory. Enough background material (including detailed proofs) is supplied to give the student a firm grounding in the subject.
Homological Algebra of Semimodules and Semicontramodules
Author: Leonid Positselski
Publisher: Springer Science & Business Media
ISBN: 303460436X
Category : Mathematics
Languages : en
Pages : 364
Book Description
This book provides comprehensive coverage on semi-infinite homology and cohomology of associative algebraic structures. It features rich representation-theoretic and algebro-geometric examples and applications.
Publisher: Springer Science & Business Media
ISBN: 303460436X
Category : Mathematics
Languages : en
Pages : 364
Book Description
This book provides comprehensive coverage on semi-infinite homology and cohomology of associative algebraic structures. It features rich representation-theoretic and algebro-geometric examples and applications.
Stable Homotopy over the Steenrod Algebra
Author: John Harold Palmieri
Publisher: American Mathematical Soc.
ISBN: 0821826689
Category : Mathematics
Languages : en
Pages : 193
Book Description
This title applys the tools of stable homotopy theory to the study of modules over the mod $p$ Steenrod algebra $A DEGREES{*}$. More precisely, let $A$ be the dual of $A DEGREES{*}$; then we study the category $\mathsf{stable}(A)$ of unbounded cochain complexes of injective comodules over $A$, in which the morphisms are cochain homotopy classes of maps. This category is triangulated. Indeed, it is a stable homotopy category, so we can use Brown representability, Bousfield localization, Brown-Comenetz duality, and other homotopy-theoretic tools to study it. One focus of attention is the analogue of the stable homotopy groups of spheres, which in this setting is the cohomology of $A$, $\mathrm{Ext}_A DEGREES{**}(\mathbf{F}_p, \mathbf{F}_p)$. This title also has nilpotence theorems, periodicity theorems, a convergent chromatic tower, and a nu
Publisher: American Mathematical Soc.
ISBN: 0821826689
Category : Mathematics
Languages : en
Pages : 193
Book Description
This title applys the tools of stable homotopy theory to the study of modules over the mod $p$ Steenrod algebra $A DEGREES{*}$. More precisely, let $A$ be the dual of $A DEGREES{*}$; then we study the category $\mathsf{stable}(A)$ of unbounded cochain complexes of injective comodules over $A$, in which the morphisms are cochain homotopy classes of maps. This category is triangulated. Indeed, it is a stable homotopy category, so we can use Brown representability, Bousfield localization, Brown-Comenetz duality, and other homotopy-theoretic tools to study it. One focus of attention is the analogue of the stable homotopy groups of spheres, which in this setting is the cohomology of $A$, $\mathrm{Ext}_A DEGREES{**}(\mathbf{F}_p, \mathbf{F}_p)$. This title also has nilpotence theorems, periodicity theorems, a convergent chromatic tower, and a nu
Handbook of Algebra
Author: M. Hazewinkel
Publisher: Elsevier
ISBN: 0080932819
Category : Mathematics
Languages : en
Pages : 637
Book Description
Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest. In addition to the primary information given in the Handbook, there are references to relevant articles, books or lecture notes to help the reader. An excellent index has been included which is extensive and not limited to definitions, theorems etc. The Handbook of Algebra will publish articles as they are received and thus the reader will find in this third volume articles from twelve different sections. The advantages of this scheme are two-fold: accepted articles will be published quickly and the outline of the Handbook can be allowed to evolve as the various volumes are published. A particularly important function of the Handbook is to provide professional mathematicians working in an area other than their own with sufficient information on the topic in question if and when it is needed.- Thorough and practical source of information - Provides in-depth coverage of new topics in algebra - Includes references to relevant articles, books and lecture notes
Publisher: Elsevier
ISBN: 0080932819
Category : Mathematics
Languages : en
Pages : 637
Book Description
Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest. In addition to the primary information given in the Handbook, there are references to relevant articles, books or lecture notes to help the reader. An excellent index has been included which is extensive and not limited to definitions, theorems etc. The Handbook of Algebra will publish articles as they are received and thus the reader will find in this third volume articles from twelve different sections. The advantages of this scheme are two-fold: accepted articles will be published quickly and the outline of the Handbook can be allowed to evolve as the various volumes are published. A particularly important function of the Handbook is to provide professional mathematicians working in an area other than their own with sufficient information on the topic in question if and when it is needed.- Thorough and practical source of information - Provides in-depth coverage of new topics in algebra - Includes references to relevant articles, books and lecture notes
Rings, Modules, Algebras, and Abelian Groups
Author: Alberto Facchini
Publisher: CRC Press
ISBN: 9780824750817
Category : Mathematics
Languages : en
Pages : 530
Book Description
Rings, Modules, Algebras, and Abelian Groups summarizes the proceedings of a recent algebraic conference held at Venice International University in Italy. Surveying the most influential developments in the field, this reference reviews the latest research on Abelian groups, algebras and their representations, module and ring theory, and topological
Publisher: CRC Press
ISBN: 9780824750817
Category : Mathematics
Languages : en
Pages : 530
Book Description
Rings, Modules, Algebras, and Abelian Groups summarizes the proceedings of a recent algebraic conference held at Venice International University in Italy. Surveying the most influential developments in the field, this reference reviews the latest research on Abelian groups, algebras and their representations, module and ring theory, and topological
Relative Nonhomogeneous Koszul Duality
Author: Leonid Positselski
Publisher: Springer Nature
ISBN: 3030895408
Category : Mathematics
Languages : en
Pages : 303
Book Description
This research monograph develops the theory of relative nonhomogeneous Koszul duality. Koszul duality is a fundamental phenomenon in homological algebra and related areas of mathematics, such as algebraic topology, algebraic geometry, and representation theory. Koszul duality is a popular subject of contemporary research. This book, written by one of the world's leading experts in the area, includes the homogeneous and nonhomogeneous quadratic duality theory over a nonsemisimple, noncommutative base ring, the Poincare–Birkhoff–Witt theorem generalized to this context, and triangulated equivalences between suitable exotic derived categories of modules, curved DG comodules, and curved DG contramodules. The thematic example, meaning the classical duality between the ring of differential operators and the de Rham DG algebra of differential forms, involves some of the most important objects of study in the contemporary algebraic and differential geometry. For the first time in the history of Koszul duality the derived D-\Omega duality is included into a general framework. Examples highly relevant for algebraic and differential geometry are discussed in detail.
Publisher: Springer Nature
ISBN: 3030895408
Category : Mathematics
Languages : en
Pages : 303
Book Description
This research monograph develops the theory of relative nonhomogeneous Koszul duality. Koszul duality is a fundamental phenomenon in homological algebra and related areas of mathematics, such as algebraic topology, algebraic geometry, and representation theory. Koszul duality is a popular subject of contemporary research. This book, written by one of the world's leading experts in the area, includes the homogeneous and nonhomogeneous quadratic duality theory over a nonsemisimple, noncommutative base ring, the Poincare–Birkhoff–Witt theorem generalized to this context, and triangulated equivalences between suitable exotic derived categories of modules, curved DG comodules, and curved DG contramodules. The thematic example, meaning the classical duality between the ring of differential operators and the de Rham DG algebra of differential forms, involves some of the most important objects of study in the contemporary algebraic and differential geometry. For the first time in the history of Koszul duality the derived D-\Omega duality is included into a general framework. Examples highly relevant for algebraic and differential geometry are discussed in detail.