Modern Data Analysis

Modern Data Analysis PDF Author: Lawrence C. Hamilton
Publisher: Wadsworth Publishing Company
ISBN:
Category : Mathematics
Languages : en
Pages : 712

Get Book Here

Book Description

Modern Data Analysis

Modern Data Analysis PDF Author: Lawrence C. Hamilton
Publisher: Wadsworth Publishing Company
ISBN:
Category : Mathematics
Languages : en
Pages : 712

Get Book Here

Book Description


Modern Data Science with R

Modern Data Science with R PDF Author: Benjamin S. Baumer
Publisher: CRC Press
ISBN: 0429575394
Category : Business & Economics
Languages : en
Pages : 830

Get Book Here

Book Description
From a review of the first edition: "Modern Data Science with R... is rich with examples and is guided by a strong narrative voice. What’s more, it presents an organizing framework that makes a convincing argument that data science is a course distinct from applied statistics" (The American Statistician). Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world data problems. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling questions. The second edition is updated to reflect the growing influence of the tidyverse set of packages. All code in the book has been revised and styled to be more readable and easier to understand. New functionality from packages like sf, purrr, tidymodels, and tidytext is now integrated into the text. All chapters have been revised, and several have been split, re-organized, or re-imagined to meet the shifting landscape of best practice.

Modern Data Analysis

Modern Data Analysis PDF Author: Robert L. Launer
Publisher: Academic Press
ISBN: 1483263061
Category : Mathematics
Languages : en
Pages : 216

Get Book Here

Book Description
Modern Data Analysis contains the proceedings of a Workshop on Modern Data Analysis held in Raleigh, North Carolina, on June 2-4, 1980 under the auspices of the United States Army Research Office. The papers review theories and methods of data analysis and cover topics ranging from single and multiple quantile-quantile (Q-Q) plotting procedures to biplot display and pencil-and-paper exploratory data analysis methods. Projection pursuit methods for data analysis are also discussed. Comprised of nine chapters, this book begins with an introduction to styles of data analysis techniques, followed by an analysis of single and multiple Q-Q plotting procedures. Problems involving extreme-value data and the behavior of sample averages are considered. Subsequent chapters deal with the use of smelting in guiding re-expression; geometric data analysis; and influence functions and regression diagnostics. The final chapter examines the use and interpretation of robust analysis of variance for the general non-full-rank linear model. The procedures are described in terms of their mathematical structure, which leads to efficient computational algorithms. This monograph should be of interest to mathematicians and statisticians.

Optimization for Data Analysis

Optimization for Data Analysis PDF Author: Stephen J. Wright
Publisher: Cambridge University Press
ISBN: 1316518981
Category : Computers
Languages : en
Pages : 239

Get Book Here

Book Description
A concise text that presents and analyzes the fundamental techniques and methods in optimization that are useful in data science.

Python and R for the Modern Data Scientist

Python and R for the Modern Data Scientist PDF Author: Rick J. Scavetta
Publisher: "O'Reilly Media, Inc."
ISBN: 1492093378
Category : Computers
Languages : en
Pages : 199

Get Book Here

Book Description
Success in data science depends on the flexible and appropriate use of tools. That includes Python and R, two of the foundational programming languages in the field. This book guides data scientists from the Python and R communities along the path to becoming bilingual. By recognizing the strengths of both languages, you'll discover new ways to accomplish data science tasks and expand your skill set. Authors Rick Scavetta and Boyan Angelov explain the parallel structures of these languages and highlight where each one excels, whether it's their linguistic features or the powers of their open source ecosystems. You'll learn how to use Python and R together in real-world settings and broaden your job opportunities as a bilingual data scientist. Learn Python and R from the perspective of your current language Understand the strengths and weaknesses of each language Identify use cases where one language is better suited than the other Understand the modern open source ecosystem available for both, including packages, frameworks, and workflows Learn how to integrate R and Python in a single workflow Follow a case study that demonstrates ways to use these languages together

Modern Data Strategy

Modern Data Strategy PDF Author: Mike Fleckenstein
Publisher: Springer
ISBN: 3319689932
Category : Computers
Languages : en
Pages : 269

Get Book Here

Book Description
This book contains practical steps business users can take to implement data management in a number of ways, including data governance, data architecture, master data management, business intelligence, and others. It defines data strategy, and covers chapters that illustrate how to align a data strategy with the business strategy, a discussion on valuing data as an asset, the evolution of data management, and who should oversee a data strategy. This provides the user with a good understanding of what a data strategy is and its limits. Critical to a data strategy is the incorporation of one or more data management domains. Chapters on key data management domains—data governance, data architecture, master data management and analytics, offer the user a practical approach to data management execution within a data strategy. The intent is to enable the user to identify how execution on one or more data management domains can help solve business issues. This book is intended for business users who work with data, who need to manage one or more aspects of the organization’s data, and who want to foster an integrated approach for how enterprise data is managed. This book is also an excellent reference for students studying computer science and business management or simply for someone who has been tasked with starting or improving existing data management.

Data Analysis Methods in Physical Oceanography

Data Analysis Methods in Physical Oceanography PDF Author: Richard E. Thomson
Publisher: Elsevier
ISBN: 0080477003
Category : Science
Languages : en
Pages : 654

Get Book Here

Book Description
Data Analysis Methods in Physical Oceanography is a practical referenceguide to established and modern data analysis techniques in earth and oceansciences. This second and revised edition is even more comprehensive with numerous updates, and an additional appendix on 'Convolution and Fourier transforms'. Intended for both students and established scientists, the fivemajor chapters of the book cover data acquisition and recording, dataprocessing and presentation, statistical methods and error handling,analysis of spatial data fields, and time series analysis methods. Chapter 5on time series analysis is a book in itself, spanning a wide diversity oftopics from stochastic processes and stationarity, coherence functions,Fourier analysis, tidal harmonic analysis, spectral and cross-spectralanalysis, wavelet and other related methods for processing nonstationarydata series, digital filters, and fractals. The seven appendices includeunit conversions, approximation methods and nondimensional numbers used ingeophysical fluid dynamics, presentations on convolution, statisticalterminology, and distribution functions, and a number of importantstatistical tables. Twenty pages are devoted to references. Featuring:• An in-depth presentation of modern techniques for the analysis of temporal and spatial data sets collected in oceanography, geophysics, and other disciplines in earth and ocean sciences.• A detailed overview of oceanographic instrumentation and sensors - old and new - used to collect oceanographic data.• 7 appendices especially applicable to earth and ocean sciences ranging from conversion of units, through statistical tables, to terminology and non-dimensional parameters. In praise of the first edition: "(...)This is a very practical guide to the various statistical analysis methods used for obtaining information from geophysical data, with particular reference to oceanography(...)The book provides both a text for advanced students of the geophysical sciences and a useful reference volume for researchers." Aslib Book Guide Vol 63, No. 9, 1998 "(...)This is an excellent book that I recommend highly and will definitely use for my own research and teaching." EOS Transactions, D.A. Jay, 1999 "(...)In summary, this book is the most comprehensive and practical source of information on data analysis methods available to the physical oceanographer. The reader gets the benefit of extremely broad coverage and an excellent set of examples drawn from geographical observations." Oceanography, Vol. 12, No. 3, A. Plueddemann, 1999 "(...)Data Analysis Methods in Physical Oceanography is highly recommended for a wide range of readers, from the relative novice to the experienced researcher. It would be appropriate for academic and special libraries." E-Streams, Vol. 2, No. 8, P. Mofjelf, August 1999

Longitudinal Data Analysis

Longitudinal Data Analysis PDF Author: Garrett Fitzmaurice
Publisher: CRC Press
ISBN: 142001157X
Category : Mathematics
Languages : en
Pages : 633

Get Book Here

Book Description
Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory

Modern Data Warehousing, Mining, and Visualization

Modern Data Warehousing, Mining, and Visualization PDF Author: George M. Marakas
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 300

Get Book Here

Book Description
For undergraduate/graduate-level Data Mining or Data Warehousing courses in Information Systems or Operations Management Departments electives. Taking a multidisciplinary user/manager approach, this text looks at data warehousing technologies necessary to support the business processes of the twenty-first century. Using a balanced professional and conversational approach, it explores the basic concepts of data mining, warehousing, and visualization with an emphasis on both technical and managerial issues and the implication of these modern emerging technologies on those issues. Data mining and visualization exercises using an included fully-enabled, but time-limited version of Megaputer's PolyAnalyst and TextAnalyst data mining and visualization software give students hands-on experience with real-world applications.

Data Pipelines Pocket Reference

Data Pipelines Pocket Reference PDF Author: James Densmore
Publisher: O'Reilly Media
ISBN: 1492087807
Category : Computers
Languages : en
Pages : 277

Get Book Here

Book Description
Data pipelines are the foundation for success in data analytics. Moving data from numerous diverse sources and transforming it to provide context is the difference between having data and actually gaining value from it. This pocket reference defines data pipelines and explains how they work in today's modern data stack. You'll learn common considerations and key decision points when implementing pipelines, such as batch versus streaming data ingestion and build versus buy. This book addresses the most common decisions made by data professionals and discusses foundational concepts that apply to open source frameworks, commercial products, and homegrown solutions. You'll learn: What a data pipeline is and how it works How data is moved and processed on modern data infrastructure, including cloud platforms Common tools and products used by data engineers to build pipelines How pipelines support analytics and reporting needs Considerations for pipeline maintenance, testing, and alerting