Author: Kim Sneppen
Publisher: Cambridge University Press
ISBN: 1107061903
Category : Science
Languages : en
Pages : 353
Book Description
An overview of current models of biological systems, reflecting the major advances that have been made over the past decade.
Models of Life
Author: Kim Sneppen
Publisher: Cambridge University Press
ISBN: 1107061903
Category : Science
Languages : en
Pages : 353
Book Description
An overview of current models of biological systems, reflecting the major advances that have been made over the past decade.
Publisher: Cambridge University Press
ISBN: 1107061903
Category : Science
Languages : en
Pages : 353
Book Description
An overview of current models of biological systems, reflecting the major advances that have been made over the past decade.
Models of My Life
Author: Herbert A. Simon
Publisher: MIT Press
ISBN: 026269185X
Category : Biography & Autobiography
Languages : en
Pages : 463
Book Description
In this candid and witty autobiography, Nobel laureate Herbert A. Simon looks at his distinguished and varied career, continually asking himself whether (and how) what he learned as a scientist helps to explain other aspects of his life. A brilliant polymath in an age of increasing specialization, Simon is one of those rare scholars whose work defines fields of inquiry. Crossing disciplinary lines in half a dozen fields, Simon's story encompasses an explosion in the information sciences, the transformation of psychology by the information-processing paradigm, and the use of computer simulation for modeling the behavior of highly complex systems. Simon's theory of bounded rationality led to a Nobel Prize in economics, and his work on building machines that think—based on the notion that human intelligence is the rule-governed manipulation of symbols—laid conceptual foundations for the new cognitive science. Subsequently, contrasting metaphors of the maze (Simon's view) and of the mind (neural nets) have dominated the artificial intelligence debate. There is also a warm account of his successful marriage and of an unconsummated love affair, letters to his children, columns, a short story, and political and personal intrigue in academe.
Publisher: MIT Press
ISBN: 026269185X
Category : Biography & Autobiography
Languages : en
Pages : 463
Book Description
In this candid and witty autobiography, Nobel laureate Herbert A. Simon looks at his distinguished and varied career, continually asking himself whether (and how) what he learned as a scientist helps to explain other aspects of his life. A brilliant polymath in an age of increasing specialization, Simon is one of those rare scholars whose work defines fields of inquiry. Crossing disciplinary lines in half a dozen fields, Simon's story encompasses an explosion in the information sciences, the transformation of psychology by the information-processing paradigm, and the use of computer simulation for modeling the behavior of highly complex systems. Simon's theory of bounded rationality led to a Nobel Prize in economics, and his work on building machines that think—based on the notion that human intelligence is the rule-governed manipulation of symbols—laid conceptual foundations for the new cognitive science. Subsequently, contrasting metaphors of the maze (Simon's view) and of the mind (neural nets) have dominated the artificial intelligence debate. There is also a warm account of his successful marriage and of an unconsummated love affair, letters to his children, columns, a short story, and political and personal intrigue in academe.
Modeling Life
Author: Alan Garfinkel
Publisher: Springer
ISBN: 3319597310
Category : Mathematics
Languages : en
Pages : 456
Book Description
This book develops the mathematical tools essential for students in the life sciences to describe interacting systems and predict their behavior. From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. Complex feedback relations and counter-intuitive responses are common in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models throughout. Encountering these concepts in context, students learn not only quantitative techniques, but how to bridge between biological and mathematical ways of thinking. Examples range broadly, exploring the dynamics of neurons and the immune system, through to population dynamics and the Google PageRank algorithm. Each scenario relies only on an interest in the natural world; no biological expertise is assumed of student or instructor. Building on a single prerequisite of Precalculus, the book suits a two-quarter sequence for first or second year undergraduates, and meets the mathematical requirements of medical school entry. The later material provides opportunities for more advanced students in both mathematics and life sciences to revisit theoretical knowledge in a rich, real-world framework. In all cases, the focus is clear: how does the math help us understand the science?
Publisher: Springer
ISBN: 3319597310
Category : Mathematics
Languages : en
Pages : 456
Book Description
This book develops the mathematical tools essential for students in the life sciences to describe interacting systems and predict their behavior. From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. Complex feedback relations and counter-intuitive responses are common in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models throughout. Encountering these concepts in context, students learn not only quantitative techniques, but how to bridge between biological and mathematical ways of thinking. Examples range broadly, exploring the dynamics of neurons and the immune system, through to population dynamics and the Google PageRank algorithm. Each scenario relies only on an interest in the natural world; no biological expertise is assumed of student or instructor. Building on a single prerequisite of Precalculus, the book suits a two-quarter sequence for first or second year undergraduates, and meets the mathematical requirements of medical school entry. The later material provides opportunities for more advanced students in both mathematics and life sciences to revisit theoretical knowledge in a rich, real-world framework. In all cases, the focus is clear: how does the math help us understand the science?
Solutions Manual to Accompany Models for Life
Author: Jeffrey T. Barton
Publisher: John Wiley & Sons
ISBN: 1119040027
Category : Mathematics
Languages : en
Pages : 182
Book Description
A solutions manual to accompany An Introduction to Discrete Mathematical Modeling with Microsoft® Office Excel® With a focus on mathematical models based on real and current data, Models for Life: An Introduction to Discrete Mathematical Modeling with Microsoft® Office Excel® guides readers in the solution of relevant, practical problems by introducing both mathematical and Excel techniques. The book begins with a step-by-step introduction to discrete dynamical systems, which are mathematical models that describe how a quantity changes from one point in time to the next. Readers are taken through the process, language, and notation required for the construction of such models as well as their implementation in Excel. The book examines single-compartment models in contexts such as population growth, personal finance, and body weight and provides an introduction to more advanced, multi-compartment models via applications in many areas, including military combat, infectious disease epidemics, and ranking methods. Models for Life: An Introduction to Discrete Mathematical Modeling with Microsoft® Office Excel® also features: A modular organization that, after the first chapter, allows readers to explore chapters in any order Numerous practical examples and exercises that enable readers to personalize the presented models by using their own data Carefully selected real-world applications that motivate the mathematical material such as predicting blood alcohol concentration, ranking sports teams, and tracking credit card debt References throughout the book to disciplinary research on which the presented models and model parameters are based in order to provide authenticity and resources for further study Relevant Excel concepts with step-by-step guidance, including screenshots to help readers better understand the presented material Both mathematical and graphical techniques for understanding concepts such as equilibrium values, fixed points, disease endemicity, maximum sustainable yield, and a drug’s therapeutic window A companion website that includes the referenced Excel spreadsheets, select solutions to homework problems, and an instructor’s manual with solutions to all homework problems, project ideas, and a test bank
Publisher: John Wiley & Sons
ISBN: 1119040027
Category : Mathematics
Languages : en
Pages : 182
Book Description
A solutions manual to accompany An Introduction to Discrete Mathematical Modeling with Microsoft® Office Excel® With a focus on mathematical models based on real and current data, Models for Life: An Introduction to Discrete Mathematical Modeling with Microsoft® Office Excel® guides readers in the solution of relevant, practical problems by introducing both mathematical and Excel techniques. The book begins with a step-by-step introduction to discrete dynamical systems, which are mathematical models that describe how a quantity changes from one point in time to the next. Readers are taken through the process, language, and notation required for the construction of such models as well as their implementation in Excel. The book examines single-compartment models in contexts such as population growth, personal finance, and body weight and provides an introduction to more advanced, multi-compartment models via applications in many areas, including military combat, infectious disease epidemics, and ranking methods. Models for Life: An Introduction to Discrete Mathematical Modeling with Microsoft® Office Excel® also features: A modular organization that, after the first chapter, allows readers to explore chapters in any order Numerous practical examples and exercises that enable readers to personalize the presented models by using their own data Carefully selected real-world applications that motivate the mathematical material such as predicting blood alcohol concentration, ranking sports teams, and tracking credit card debt References throughout the book to disciplinary research on which the presented models and model parameters are based in order to provide authenticity and resources for further study Relevant Excel concepts with step-by-step guidance, including screenshots to help readers better understand the presented material Both mathematical and graphical techniques for understanding concepts such as equilibrium values, fixed points, disease endemicity, maximum sustainable yield, and a drug’s therapeutic window A companion website that includes the referenced Excel spreadsheets, select solutions to homework problems, and an instructor’s manual with solutions to all homework problems, project ideas, and a test bank
Modeling Life
Author: Sarah R. Phillips
Publisher: State University of New York Press
ISBN: 079148100X
Category : Social Science
Languages : en
Pages : 168
Book Description
This is a book about life modeling. Unlike the painter whose name appears beside his finished portrait, the life model, posing nude, perhaps for months, goes unacknowledged. Standing at a unique juncture—between nude and naked, between high and low culture, between art and pornography—the life model is admired in a finished sculpture, but scorned for her or his posing. Making use of extensive interviews with both male and female models and quoting them frequently, Sarah R. Phillips gives a voice to life models. She explores the meaning that life models give to themselves and to their work and seeks to understand the lived experience of life models as they practice their profession. Throughout history, people have romanticized life models in an aura of bohemian eroticism, or condemned them as strippers or sex workers. Modeling Life reveals how life models get into the business, managing sexuality in the studio, what it means to be a "muse," and why their work is important.
Publisher: State University of New York Press
ISBN: 079148100X
Category : Social Science
Languages : en
Pages : 168
Book Description
This is a book about life modeling. Unlike the painter whose name appears beside his finished portrait, the life model, posing nude, perhaps for months, goes unacknowledged. Standing at a unique juncture—between nude and naked, between high and low culture, between art and pornography—the life model is admired in a finished sculpture, but scorned for her or his posing. Making use of extensive interviews with both male and female models and quoting them frequently, Sarah R. Phillips gives a voice to life models. She explores the meaning that life models give to themselves and to their work and seeks to understand the lived experience of life models as they practice their profession. Throughout history, people have romanticized life models in an aura of bohemian eroticism, or condemned them as strippers or sex workers. Modeling Life reveals how life models get into the business, managing sexuality in the studio, what it means to be a "muse," and why their work is important.
Life Models
Author: D. H. Jonathan
Publisher:
ISBN: 9781733090803
Category :
Languages : en
Pages :
Book Description
David Michaels, a solitary widower, is a returning college student who models nude for art classes part time. He gets more than he bargained for when he shares the platform with another model, the sometimes wild and always vivacious Lydia Nelson.
Publisher:
ISBN: 9781733090803
Category :
Languages : en
Pages :
Book Description
David Michaels, a solitary widower, is a returning college student who models nude for art classes part time. He gets more than he bargained for when he shares the platform with another model, the sometimes wild and always vivacious Lydia Nelson.
Accelerated Life Models
Author: Vilijandas Bagdonavicius
Publisher: CRC Press
ISBN: 1420035878
Category : Business & Economics
Languages : en
Pages : 361
Book Description
The authors of this monograph have developed a large and important class of survival analysis models that generalize most of the existing models. In a unified, systematic presentation, this monograph fully details those models and explores areas of accelerated life testing usually only touched upon in the literature. Accelerated Life Models:
Publisher: CRC Press
ISBN: 1420035878
Category : Business & Economics
Languages : en
Pages : 361
Book Description
The authors of this monograph have developed a large and important class of survival analysis models that generalize most of the existing models. In a unified, systematic presentation, this monograph fully details those models and explores areas of accelerated life testing usually only touched upon in the literature. Accelerated Life Models:
Models for Life
Author: Jeffrey T. Barton
Publisher: John Wiley & Sons
ISBN: 1119039754
Category : Mathematics
Languages : en
Pages : 496
Book Description
Features an authentic and engaging approach to mathematical modeling driven by real-world applications With a focus on mathematical models based on real and current data, Models for Life: An Introduction to Discrete Mathematical Modeling with Microsoft® Office Excel® guides readers in the solution of relevant, practical problems by introducing both mathematical and Excel techniques. The book begins with a step-by-step introduction to discrete dynamical systems, which are mathematical models that describe how a quantity changes from one point in time to the next. Readers are taken through the process, language, and notation required for the construction of such models as well as their implementation in Excel. The book examines single-compartment models in contexts such as population growth, personal finance, and body weight and provides an introduction to more advanced, multi-compartment models via applications in many areas, including military combat, infectious disease epidemics, and ranking methods. Models for Life: An Introduction to Discrete Mathematical Modeling with Microsoft® Office Excel® also features: A modular organization that, after the first chapter, allows readers to explore chapters in any order Numerous practical examples and exercises that enable readers to personalize the presented models by using their own data Carefully selected real-world applications that motivate the mathematical material such as predicting blood alcohol concentration, ranking sports teams, and tracking credit card debt References throughout the book to disciplinary research on which the presented models and model parameters are based in order to provide authenticity and resources for further study Relevant Excel concepts with step-by-step guidance, including screenshots to help readers better understand the presented material Both mathematical and graphical techniques for understanding concepts such as equilibrium values, fixed points, disease endemicity, maximum sustainable yield, and a drug’s therapeutic window A companion website that includes the referenced Excel spreadsheets, select solutions to homework problems, and an instructor’s manual with solutions to all homework problems, project ideas, and a test bank The book is ideal for undergraduate non-mathematics majors enrolled in mathematics or quantitative reasoning courses such as introductory mathematical modeling, applications of mathematics, survey of mathematics, discrete mathematical modeling, and mathematics for liberal arts. The book is also an appropriate supplement and project source for honors and/or independent study courses in mathematical modeling and mathematical biology. Jeffrey T. Barton, PhD, is Professor of Mathematics in the Mathematics Department at Birmingham-Southern College. A member of the American Mathematical Society and Mathematical Association of America, his mathematical interests include approximation theory, analytic number theory, mathematical biology, mathematical modeling, and the history of mathematics.
Publisher: John Wiley & Sons
ISBN: 1119039754
Category : Mathematics
Languages : en
Pages : 496
Book Description
Features an authentic and engaging approach to mathematical modeling driven by real-world applications With a focus on mathematical models based on real and current data, Models for Life: An Introduction to Discrete Mathematical Modeling with Microsoft® Office Excel® guides readers in the solution of relevant, practical problems by introducing both mathematical and Excel techniques. The book begins with a step-by-step introduction to discrete dynamical systems, which are mathematical models that describe how a quantity changes from one point in time to the next. Readers are taken through the process, language, and notation required for the construction of such models as well as their implementation in Excel. The book examines single-compartment models in contexts such as population growth, personal finance, and body weight and provides an introduction to more advanced, multi-compartment models via applications in many areas, including military combat, infectious disease epidemics, and ranking methods. Models for Life: An Introduction to Discrete Mathematical Modeling with Microsoft® Office Excel® also features: A modular organization that, after the first chapter, allows readers to explore chapters in any order Numerous practical examples and exercises that enable readers to personalize the presented models by using their own data Carefully selected real-world applications that motivate the mathematical material such as predicting blood alcohol concentration, ranking sports teams, and tracking credit card debt References throughout the book to disciplinary research on which the presented models and model parameters are based in order to provide authenticity and resources for further study Relevant Excel concepts with step-by-step guidance, including screenshots to help readers better understand the presented material Both mathematical and graphical techniques for understanding concepts such as equilibrium values, fixed points, disease endemicity, maximum sustainable yield, and a drug’s therapeutic window A companion website that includes the referenced Excel spreadsheets, select solutions to homework problems, and an instructor’s manual with solutions to all homework problems, project ideas, and a test bank The book is ideal for undergraduate non-mathematics majors enrolled in mathematics or quantitative reasoning courses such as introductory mathematical modeling, applications of mathematics, survey of mathematics, discrete mathematical modeling, and mathematics for liberal arts. The book is also an appropriate supplement and project source for honors and/or independent study courses in mathematical modeling and mathematical biology. Jeffrey T. Barton, PhD, is Professor of Mathematics in the Mathematics Department at Birmingham-Southern College. A member of the American Mathematical Society and Mathematical Association of America, his mathematical interests include approximation theory, analytic number theory, mathematical biology, mathematical modeling, and the history of mathematics.
Bringing Bayesian Models to Life
Author: Mevin B. Hooten
Publisher: CRC Press
ISBN: 0429516800
Category : Mathematics
Languages : en
Pages : 430
Book Description
Bringing Bayesian Models to Life empowers the reader to extend, enhance, and implement statistical models for ecological and environmental data analysis. We open the black box and show the reader how to connect modern statistical models to computer algorithms. These algorithms allow the user to fit models that answer their scientific questions without needing to rely on automated Bayesian software. We show how to handcraft statistical models that are useful in ecological and environmental science including: linear and generalized linear models, spatial and time series models, occupancy and capture-recapture models, animal movement models, spatio-temporal models, and integrated population-models. Features: R code implementing algorithms to fit Bayesian models using real and simulated data examples. A comprehensive review of statistical models commonly used in ecological and environmental science. Overview of Bayesian computational methods such as importance sampling, MCMC, and HMC. Derivations of the necessary components to construct statistical algorithms from scratch. Bringing Bayesian Models to Life contains a comprehensive treatment of models and associated algorithms for fitting the models to data. We provide detailed and annotated R code in each chapter and apply it to fit each model we present to either real or simulated data for instructional purposes. Our code shows how to create every result and figure in the book so that readers can use and modify it for their own analyses. We provide all code and data in an organized set of directories available at the authors' websites.
Publisher: CRC Press
ISBN: 0429516800
Category : Mathematics
Languages : en
Pages : 430
Book Description
Bringing Bayesian Models to Life empowers the reader to extend, enhance, and implement statistical models for ecological and environmental data analysis. We open the black box and show the reader how to connect modern statistical models to computer algorithms. These algorithms allow the user to fit models that answer their scientific questions without needing to rely on automated Bayesian software. We show how to handcraft statistical models that are useful in ecological and environmental science including: linear and generalized linear models, spatial and time series models, occupancy and capture-recapture models, animal movement models, spatio-temporal models, and integrated population-models. Features: R code implementing algorithms to fit Bayesian models using real and simulated data examples. A comprehensive review of statistical models commonly used in ecological and environmental science. Overview of Bayesian computational methods such as importance sampling, MCMC, and HMC. Derivations of the necessary components to construct statistical algorithms from scratch. Bringing Bayesian Models to Life contains a comprehensive treatment of models and associated algorithms for fitting the models to data. We provide detailed and annotated R code in each chapter and apply it to fit each model we present to either real or simulated data for instructional purposes. Our code shows how to create every result and figure in the book so that readers can use and modify it for their own analyses. We provide all code and data in an organized set of directories available at the authors' websites.
Models.Behaving.Badly.
Author: Emanuel Derman
Publisher: Simon and Schuster
ISBN: 1439165017
Category : Business & Economics
Languages : en
Pages : 242
Book Description
Now in paperback, “a compelling, accessible, and provocative piece of work that forces us to question many of our assumptions” (Gillian Tett, author of Fool’s Gold). Quants, physicists working on Wall Street as quantitative analysts, have been widely blamed for triggering financial crises with their complex mathematical models. Their formulas were meant to allow Wall Street to prosper without risk. But in this penetrating insider’s look at the recent economic collapse, Emanuel Derman—former head quant at Goldman Sachs—explains the collision between mathematical modeling and economics and what makes financial models so dangerous. Though such models imitate the style of physics and employ the language of mathematics, theories in physics aim for a description of reality—but in finance, models can shoot only for a very limited approximation of reality. Derman uses his firsthand experience in financial theory and practice to explain the complicated tangles that have paralyzed the economy. Models.Behaving.Badly. exposes Wall Street’s love affair with models, and shows us why nobody will ever be able to write a model that can encapsulate human behavior.
Publisher: Simon and Schuster
ISBN: 1439165017
Category : Business & Economics
Languages : en
Pages : 242
Book Description
Now in paperback, “a compelling, accessible, and provocative piece of work that forces us to question many of our assumptions” (Gillian Tett, author of Fool’s Gold). Quants, physicists working on Wall Street as quantitative analysts, have been widely blamed for triggering financial crises with their complex mathematical models. Their formulas were meant to allow Wall Street to prosper without risk. But in this penetrating insider’s look at the recent economic collapse, Emanuel Derman—former head quant at Goldman Sachs—explains the collision between mathematical modeling and economics and what makes financial models so dangerous. Though such models imitate the style of physics and employ the language of mathematics, theories in physics aim for a description of reality—but in finance, models can shoot only for a very limited approximation of reality. Derman uses his firsthand experience in financial theory and practice to explain the complicated tangles that have paralyzed the economy. Models.Behaving.Badly. exposes Wall Street’s love affair with models, and shows us why nobody will ever be able to write a model that can encapsulate human behavior.