Author: Fabiola Alonso
Publisher: Linköping University Electronic Press
ISBN: 917685261X
Category :
Languages : en
Pages : 175
Book Description
Deep brain stimulation (DBS) is an established surgical therapy for movement disorders such as Parkinson’s disease (PD) and essential tremor (ET). A thin electrode is implanted in a predefined area of the brain with the use of stereotactic neurosurgery. In the last few years new DBS electrodes and systems have been developed with possibilities for using more parameters for control of the stimulation volume. In this thesis, simulations using the finite element method (FEM) have been developed and used for investigation of the electric field (EF) extension around different types of DBS lead designs (symmetric, steering) and stimulation modes (voltage, current). The electrode surrounding was represented either with a homogeneous model or a patient-specific model based on individual preoperative magnetic resonance imaging (MRI). The EF was visualized and compared for different lead designs and operating modes. In Paper I, the EF was quantitatively investigated around two lead designs (3389 and 6148) simulated to operate in voltage and current mode under acute and chronic time points following implantation.Simulations showed a major impact on the EF extension between postoperative time points which may explain the clinical decisions to change the stimulation amplitude weeks after implantation. In Paper II, the simulations were expanded to include two leads having steering function (6180, Surestim1) and patient-specific FEM simulations in the zona incerta. It was found that both the heterogeneity of the tissue and the operating mode, influence the EF distribution and that equivalent contact configurations of the leads result in similar EF. The steering mode presented larger volumes in current mode when using equivalent amplitudes. Simulations comparing DBS and intraoperative stimulation test using a microelectrode recording (MER) system (Paper III), showed that several parallel MER leads and the presence of the non-active DBS contacts influence the EF distribution and that the DBS EF volume can cover, but also extend to, other anatomical areas. Paper IV introduces a method for an objective exploitation of intraoperative stimulation test data in order to identify the optimal implant position in the thalamus of the chronic DBS lead. Patient-specific EF simulations were related to the anatomy with the help of brain atlases and the clinical effects which were quantified by accelerometers. The first results indicate that the good clinical effect in ET is due to several structures around the ventral intermediate nucleus of the thalamus.
Models and Simulations of the Electric Field in Deep Brain Stimulation
Author: Fabiola Alonso
Publisher: Linköping University Electronic Press
ISBN: 917685261X
Category :
Languages : en
Pages : 175
Book Description
Deep brain stimulation (DBS) is an established surgical therapy for movement disorders such as Parkinson’s disease (PD) and essential tremor (ET). A thin electrode is implanted in a predefined area of the brain with the use of stereotactic neurosurgery. In the last few years new DBS electrodes and systems have been developed with possibilities for using more parameters for control of the stimulation volume. In this thesis, simulations using the finite element method (FEM) have been developed and used for investigation of the electric field (EF) extension around different types of DBS lead designs (symmetric, steering) and stimulation modes (voltage, current). The electrode surrounding was represented either with a homogeneous model or a patient-specific model based on individual preoperative magnetic resonance imaging (MRI). The EF was visualized and compared for different lead designs and operating modes. In Paper I, the EF was quantitatively investigated around two lead designs (3389 and 6148) simulated to operate in voltage and current mode under acute and chronic time points following implantation.Simulations showed a major impact on the EF extension between postoperative time points which may explain the clinical decisions to change the stimulation amplitude weeks after implantation. In Paper II, the simulations were expanded to include two leads having steering function (6180, Surestim1) and patient-specific FEM simulations in the zona incerta. It was found that both the heterogeneity of the tissue and the operating mode, influence the EF distribution and that equivalent contact configurations of the leads result in similar EF. The steering mode presented larger volumes in current mode when using equivalent amplitudes. Simulations comparing DBS and intraoperative stimulation test using a microelectrode recording (MER) system (Paper III), showed that several parallel MER leads and the presence of the non-active DBS contacts influence the EF distribution and that the DBS EF volume can cover, but also extend to, other anatomical areas. Paper IV introduces a method for an objective exploitation of intraoperative stimulation test data in order to identify the optimal implant position in the thalamus of the chronic DBS lead. Patient-specific EF simulations were related to the anatomy with the help of brain atlases and the clinical effects which were quantified by accelerometers. The first results indicate that the good clinical effect in ET is due to several structures around the ventral intermediate nucleus of the thalamus.
Publisher: Linköping University Electronic Press
ISBN: 917685261X
Category :
Languages : en
Pages : 175
Book Description
Deep brain stimulation (DBS) is an established surgical therapy for movement disorders such as Parkinson’s disease (PD) and essential tremor (ET). A thin electrode is implanted in a predefined area of the brain with the use of stereotactic neurosurgery. In the last few years new DBS electrodes and systems have been developed with possibilities for using more parameters for control of the stimulation volume. In this thesis, simulations using the finite element method (FEM) have been developed and used for investigation of the electric field (EF) extension around different types of DBS lead designs (symmetric, steering) and stimulation modes (voltage, current). The electrode surrounding was represented either with a homogeneous model or a patient-specific model based on individual preoperative magnetic resonance imaging (MRI). The EF was visualized and compared for different lead designs and operating modes. In Paper I, the EF was quantitatively investigated around two lead designs (3389 and 6148) simulated to operate in voltage and current mode under acute and chronic time points following implantation.Simulations showed a major impact on the EF extension between postoperative time points which may explain the clinical decisions to change the stimulation amplitude weeks after implantation. In Paper II, the simulations were expanded to include two leads having steering function (6180, Surestim1) and patient-specific FEM simulations in the zona incerta. It was found that both the heterogeneity of the tissue and the operating mode, influence the EF distribution and that equivalent contact configurations of the leads result in similar EF. The steering mode presented larger volumes in current mode when using equivalent amplitudes. Simulations comparing DBS and intraoperative stimulation test using a microelectrode recording (MER) system (Paper III), showed that several parallel MER leads and the presence of the non-active DBS contacts influence the EF distribution and that the DBS EF volume can cover, but also extend to, other anatomical areas. Paper IV introduces a method for an objective exploitation of intraoperative stimulation test data in order to identify the optimal implant position in the thalamus of the chronic DBS lead. Patient-specific EF simulations were related to the anatomy with the help of brain atlases and the clinical effects which were quantified by accelerometers. The first results indicate that the good clinical effect in ET is due to several structures around the ventral intermediate nucleus of the thalamus.
World Congress on Medical Physics and Biomedical Engineering 2018
Author: Lenka Lhotská
Publisher:
ISBN: 9789811090363
Category : Biomedical engineering
Languages : en
Pages :
Book Description
This book presents the proceedings of the IUPESM World Congress on Biomedical Engineering and Medical Physics, a tri-annual high-level policy meeting dedicated exclusively to furthering the role of biomedical engineering and medical physics in medicine. The book offers papers about emerging issues related to the development and sustainability of the role and impact of medical physicists and biomedical engineers in medicine and healthcare. It provides a unique and important forum to secure a coordinated, multileveled global response to the need, demand, and importance of creating and supporting strong academic and clinical teams of biomedical engineers and medical physicists for the benefit of human health.
Publisher:
ISBN: 9789811090363
Category : Biomedical engineering
Languages : en
Pages :
Book Description
This book presents the proceedings of the IUPESM World Congress on Biomedical Engineering and Medical Physics, a tri-annual high-level policy meeting dedicated exclusively to furthering the role of biomedical engineering and medical physics in medicine. The book offers papers about emerging issues related to the development and sustainability of the role and impact of medical physicists and biomedical engineers in medicine and healthcare. It provides a unique and important forum to secure a coordinated, multileveled global response to the need, demand, and importance of creating and supporting strong academic and clinical teams of biomedical engineers and medical physicists for the benefit of human health.
Brain and Human Body Modeling 2020
Author: Sergey N. Makarov
Publisher: Springer Nature
ISBN: 3030456234
Category : Biomedical engineering
Languages : en
Pages : 395
Book Description
The 41st Annual International Conference of the IEEE EMBS, took place between July 23 and 27, 2019, in Berlin, Germany. The focus was on "Biomedical engineering ranging from wellness to intensive care." This conference provided an opportunity for researchers from academia and industry to discuss a variety of topics relevant to EMBS and hosted the 4th Annual Invited Session on Computational Human Models. At this session, a bevy of research related to the development of human phantoms was presented, together with a substantial variety of practical applications explored through simulation.
Publisher: Springer Nature
ISBN: 3030456234
Category : Biomedical engineering
Languages : en
Pages : 395
Book Description
The 41st Annual International Conference of the IEEE EMBS, took place between July 23 and 27, 2019, in Berlin, Germany. The focus was on "Biomedical engineering ranging from wellness to intensive care." This conference provided an opportunity for researchers from academia and industry to discuss a variety of topics relevant to EMBS and hosted the 4th Annual Invited Session on Computational Human Models. At this session, a bevy of research related to the development of human phantoms was presented, together with a substantial variety of practical applications explored through simulation.
Brain and Human Body Modeling
Author: Sergey Makarov
Publisher: Springer Nature
ISBN: 3030212939
Category : Technology & Engineering
Languages : en
Pages : 398
Book Description
This open access book describes modern applications of computational human modeling with specific emphasis in the areas of neurology and neuroelectromagnetics, depression and cancer treatments, radio-frequency studies and wireless communications. Special consideration is also given to the use of human modeling to the computational assessment of relevant regulatory and safety requirements. Readers working on applications that may expose human subjects to electromagnetic radiation will benefit from this book’s coverage of the latest developments in computational modelling and human phantom development to assess a given technology’s safety and efficacy in a timely manner. Describes construction and application of computational human models including anatomically detailed and subject specific models; Explains new practices in computational human modeling for neuroelectromagnetics, electromagnetic safety, and exposure evaluations; Includes a survey of modern applications for which computational human models are critical; Describes cellular-level interactions between the human body and electromagnetic fields.
Publisher: Springer Nature
ISBN: 3030212939
Category : Technology & Engineering
Languages : en
Pages : 398
Book Description
This open access book describes modern applications of computational human modeling with specific emphasis in the areas of neurology and neuroelectromagnetics, depression and cancer treatments, radio-frequency studies and wireless communications. Special consideration is also given to the use of human modeling to the computational assessment of relevant regulatory and safety requirements. Readers working on applications that may expose human subjects to electromagnetic radiation will benefit from this book’s coverage of the latest developments in computational modelling and human phantom development to assess a given technology’s safety and efficacy in a timely manner. Describes construction and application of computational human models including anatomically detailed and subject specific models; Explains new practices in computational human modeling for neuroelectromagnetics, electromagnetic safety, and exposure evaluations; Includes a survey of modern applications for which computational human models are critical; Describes cellular-level interactions between the human body and electromagnetic fields.
Finite Element Method
Author: G.R. Liu
Publisher: Elsevier
ISBN: 0080472761
Category : Mathematics
Languages : en
Pages : 365
Book Description
The Finite Element Method (FEM) has become an indispensable technology for the modelling and simulation of engineering systems. Written for engineers and students alike, the aim of the book is to provide the necessary theories and techniques of the FEM for readers to be able to use a commercial FEM package to solve primarily linear problems in mechanical and civil engineering with the main focus on structural mechanics and heat transfer.Fundamental theories are introduced in a straightforward way, and state-of-the-art techniques for designing and analyzing engineering systems, including microstructural systems are explained in detail. Case studies are used to demonstrate these theories, methods, techniques and practical applications, and numerous diagrams and tables are used throughout.The case studies and examples use the commercial software package ABAQUS, but the techniques explained are equally applicable for readers using other applications including NASTRAN, ANSYS, MARC, etc. - A practical and accessible guide to this complex, yet important subject - Covers modeling techniques that predict how components will operate and tolerate loads, stresses and strains in reality
Publisher: Elsevier
ISBN: 0080472761
Category : Mathematics
Languages : en
Pages : 365
Book Description
The Finite Element Method (FEM) has become an indispensable technology for the modelling and simulation of engineering systems. Written for engineers and students alike, the aim of the book is to provide the necessary theories and techniques of the FEM for readers to be able to use a commercial FEM package to solve primarily linear problems in mechanical and civil engineering with the main focus on structural mechanics and heat transfer.Fundamental theories are introduced in a straightforward way, and state-of-the-art techniques for designing and analyzing engineering systems, including microstructural systems are explained in detail. Case studies are used to demonstrate these theories, methods, techniques and practical applications, and numerous diagrams and tables are used throughout.The case studies and examples use the commercial software package ABAQUS, but the techniques explained are equally applicable for readers using other applications including NASTRAN, ANSYS, MARC, etc. - A practical and accessible guide to this complex, yet important subject - Covers modeling techniques that predict how components will operate and tolerate loads, stresses and strains in reality
World Congress on Medical Physics and Biomedical Engineering September 7 - 12, 2009 Munich, Germany
Author: Olaf Dössel
Publisher: Springer Science & Business Media
ISBN: 3642038891
Category : Technology & Engineering
Languages : en
Pages : 619
Book Description
Present Your Research to the World! The World Congress 2009 on Medical Physics and Biomedical Engineering – the triennial scientific meeting of the IUPESM - is the world’s leading forum for presenting the results of current scientific work in health-related physics and technologies to an international audience. With more than 2,800 presentations it will be the biggest conference in the fields of Medical Physics and Biomedical Engineering in 2009! Medical physics, biomedical engineering and bioengineering have been driving forces of innovation and progress in medicine and healthcare over the past two decades. As new key technologies arise with significant potential to open new options in diagnostics and therapeutics, it is a multidisciplinary task to evaluate their benefit for medicine and healthcare with respect to the quality of performance and therapeutic output. Covering key aspects such as information and communication technologies, micro- and nanosystems, optics and biotechnology, the congress will serve as an inter- and multidisciplinary platform that brings together people from basic research, R&D, industry and medical application to discuss these issues. As a major event for science, medicine and technology the congress provides a comprehensive overview and in–depth, first-hand information on new developments, advanced technologies and current and future applications. With this Final Program we would like to give you an overview of the dimension of the congress and invite you to join us in Munich! Olaf Dössel Congress President Wolfgang C.
Publisher: Springer Science & Business Media
ISBN: 3642038891
Category : Technology & Engineering
Languages : en
Pages : 619
Book Description
Present Your Research to the World! The World Congress 2009 on Medical Physics and Biomedical Engineering – the triennial scientific meeting of the IUPESM - is the world’s leading forum for presenting the results of current scientific work in health-related physics and technologies to an international audience. With more than 2,800 presentations it will be the biggest conference in the fields of Medical Physics and Biomedical Engineering in 2009! Medical physics, biomedical engineering and bioengineering have been driving forces of innovation and progress in medicine and healthcare over the past two decades. As new key technologies arise with significant potential to open new options in diagnostics and therapeutics, it is a multidisciplinary task to evaluate their benefit for medicine and healthcare with respect to the quality of performance and therapeutic output. Covering key aspects such as information and communication technologies, micro- and nanosystems, optics and biotechnology, the congress will serve as an inter- and multidisciplinary platform that brings together people from basic research, R&D, industry and medical application to discuss these issues. As a major event for science, medicine and technology the congress provides a comprehensive overview and in–depth, first-hand information on new developments, advanced technologies and current and future applications. With this Final Program we would like to give you an overview of the dimension of the congress and invite you to join us in Munich! Olaf Dössel Congress President Wolfgang C.
World Congress on Medical Physics and Biomedical Engineering, June 7-12, 2015, Toronto, Canada
Author: David A. Jaffray
Publisher: Springer
ISBN: 3319193872
Category : Technology & Engineering
Languages : en
Pages : 1790
Book Description
This book presents the proceedings of the IUPESM World Biomedical Engineering and Medical Physics, a tri-annual high-level policy meeting dedicated exclusively to furthering the role of biomedical engineering and medical physics in medicine. The book offers papers about emerging issues related to the development and sustainability of the role and impact of medical physicists and biomedical engineers in medicine and healthcare. It provides a unique and important forum to secure a coordinated, multileveled global response to the need, demand and importance of creating and supporting strong academic and clinical teams of biomedical engineers and medical physicists for the benefit of human health.
Publisher: Springer
ISBN: 3319193872
Category : Technology & Engineering
Languages : en
Pages : 1790
Book Description
This book presents the proceedings of the IUPESM World Biomedical Engineering and Medical Physics, a tri-annual high-level policy meeting dedicated exclusively to furthering the role of biomedical engineering and medical physics in medicine. The book offers papers about emerging issues related to the development and sustainability of the role and impact of medical physicists and biomedical engineers in medicine and healthcare. It provides a unique and important forum to secure a coordinated, multileveled global response to the need, demand and importance of creating and supporting strong academic and clinical teams of biomedical engineers and medical physicists for the benefit of human health.
Atlas for Stereotaxy of the Human Brain
Author: Georges Schaltenbrand
Publisher: Year Book Medical Publishers, Incorporated
ISBN: 9780815175537
Category : Brain
Languages : en
Pages : 13
Book Description
Publisher: Year Book Medical Publishers, Incorporated
ISBN: 9780815175537
Category : Brain
Languages : en
Pages : 13
Book Description
Deep Brain Stimulation (DBS) Applications
Author: Tipu Aziz
Publisher: MDPI
ISBN: 3038425389
Category : Science
Languages : en
Pages : 279
Book Description
This book is a printed edition of the Special Issue "Deep Brain Stimulation (DBS) Applications" that was published in Brain Sciences
Publisher: MDPI
ISBN: 3038425389
Category : Science
Languages : en
Pages : 279
Book Description
This book is a printed edition of the Special Issue "Deep Brain Stimulation (DBS) Applications" that was published in Brain Sciences
Deep Brain Stimulation Think Tank: Updates in Neurotechnology and Neuromodulation, Volume IV
Author: Adolfo Ramirez-Zamora
Publisher: Frontiers Media SA
ISBN: 2832551440
Category : Science
Languages : en
Pages : 195
Book Description
In recent years, numerous developments have taken place in the field of neuromodulation. The introduction of newer technologies, software and increasing understanding of brain physiology in neurological and psychiatric conditions have shaped this rapidly growing field. To create a space where all stakeholders could freely interact to discuss challenges, advancements and opportunities in the field, the first Deep Brain Stimulation (DBS) Think Tank took place in 2012 in Gainesville Florida at the University of Florida. Since then, the meeting has grown to a hybrid virtual and in person meeting expanding the number of participants to over 200 world experts in the field. The most recent DBS think tank took place in Orlando Florida on August 25th to 27th, 2021. The meeting addressed new research, technologies, and neuroethical issues in the field of neuromodulation.
Publisher: Frontiers Media SA
ISBN: 2832551440
Category : Science
Languages : en
Pages : 195
Book Description
In recent years, numerous developments have taken place in the field of neuromodulation. The introduction of newer technologies, software and increasing understanding of brain physiology in neurological and psychiatric conditions have shaped this rapidly growing field. To create a space where all stakeholders could freely interact to discuss challenges, advancements and opportunities in the field, the first Deep Brain Stimulation (DBS) Think Tank took place in 2012 in Gainesville Florida at the University of Florida. Since then, the meeting has grown to a hybrid virtual and in person meeting expanding the number of participants to over 200 world experts in the field. The most recent DBS think tank took place in Orlando Florida on August 25th to 27th, 2021. The meeting addressed new research, technologies, and neuroethical issues in the field of neuromodulation.