Author:
Publisher: Brill / Sense
ISBN: 9789087904029
Category : Engineering
Languages : en
Pages : 0
Book Description
The book describes how incorporating mathematical modeling activities and projects, that are designed to reflect authentic engineering experience, into engineering classes has the potential to enhance and tap the diverse strengths of students who come from a variety of backgrounds.
Models and Modeling in Engineering Education
Author:
Publisher: Brill / Sense
ISBN: 9789087904029
Category : Engineering
Languages : en
Pages : 0
Book Description
The book describes how incorporating mathematical modeling activities and projects, that are designed to reflect authentic engineering experience, into engineering classes has the potential to enhance and tap the diverse strengths of students who come from a variety of backgrounds.
Publisher: Brill / Sense
ISBN: 9789087904029
Category : Engineering
Languages : en
Pages : 0
Book Description
The book describes how incorporating mathematical modeling activities and projects, that are designed to reflect authentic engineering experience, into engineering classes has the potential to enhance and tap the diverse strengths of students who come from a variety of backgrounds.
Models and Modeling in Engineering Education
Author:
Publisher: BRILL
ISBN: 9087904045
Category : Education
Languages : en
Pages : 363
Book Description
Few research-based resources make engagement in engineering education reform and research practical for current and future educators. Yet, engineering educators are under immense pressure to address a wide variety of educational goals that extend well beyond the traditional student learning of engineering science and design. The now familiar ABET Criterion 3 a though k has placed the responsibility squarely on the shoulders of every engineering faculty member to ensure that our graduates have abilities in the areas of problem solving in complex engineering settings, teaming and communication and understandings in the areas of ethics, global and societal impact, and contemporary issues. Engineering educators must also concern themselves with recruitment and retention of a diverse student population. Creating learning experiences and environments that encourage and support the success of all students is a priority for engineering education reform. This book is primarily being written for current and future engineering educators and researchers. The focus is on the design, development, implementation, and study of a special category of open-ended problems—the model-eliciting activity. These are realistic problems with engineering content and contexts designed to tap the strengths of all students while providing hooks to address simultaneously other educational goals. As problem solving is at the heart of engineering education and practice, it is a theme of wide appeal to engineering educators. The aims of this book are to (1) provide engineering faculty with practical tools for creating, implementing, and assessing the use of open-ended problems that meet a variety of educational goals, (2) facilitate future collaborations between engineering and education, (3) forward engineering education as a scholarly discipline by providing a resource with which to inform and teach future educators and researchers. The book describes how incorporating mathematical modeling activities and projects, that are designed to reflect authentic engineering experience, into engineering classes has the potential to enhance and tap the diverse strengths of students who come from a variety of backgrounds. Based on the experience of a cadre of engineering and education professors who were at Purdue University during a major curriculum reform effort, this book provides a case study of the Purdue experience, which in part launched the historical beginning of the Department of Engineering Education, the first program in the United States. The reader will be provided with critical activities and tools designed during the project, and the book will be written in a way to help the reader adapt the work to their own situations. More Detail About the Content The NSF-funded Small Group Mathematical Modeling for Improved Gender Equity (SGMM) Project featured activities that require students to work in small technical teams to design mathematical models in response to engineering-related problems. Students produce a product for a specified client who communicates an explicitly stated need. Because the activities are designed such that the mathematical model is the answer/product, students’ mathematical thinking is revealed, providing data for formative and evaluative assessment of the curriculum innovation. The activities and the data derived from the use of the activities acted as a seeds for system reform, which resulted in changes in practice, perspectives and beliefs on the parts of engineering and education professors, and graduate researcher assistants. The curriculum reform was initiated and stud...
Publisher: BRILL
ISBN: 9087904045
Category : Education
Languages : en
Pages : 363
Book Description
Few research-based resources make engagement in engineering education reform and research practical for current and future educators. Yet, engineering educators are under immense pressure to address a wide variety of educational goals that extend well beyond the traditional student learning of engineering science and design. The now familiar ABET Criterion 3 a though k has placed the responsibility squarely on the shoulders of every engineering faculty member to ensure that our graduates have abilities in the areas of problem solving in complex engineering settings, teaming and communication and understandings in the areas of ethics, global and societal impact, and contemporary issues. Engineering educators must also concern themselves with recruitment and retention of a diverse student population. Creating learning experiences and environments that encourage and support the success of all students is a priority for engineering education reform. This book is primarily being written for current and future engineering educators and researchers. The focus is on the design, development, implementation, and study of a special category of open-ended problems—the model-eliciting activity. These are realistic problems with engineering content and contexts designed to tap the strengths of all students while providing hooks to address simultaneously other educational goals. As problem solving is at the heart of engineering education and practice, it is a theme of wide appeal to engineering educators. The aims of this book are to (1) provide engineering faculty with practical tools for creating, implementing, and assessing the use of open-ended problems that meet a variety of educational goals, (2) facilitate future collaborations between engineering and education, (3) forward engineering education as a scholarly discipline by providing a resource with which to inform and teach future educators and researchers. The book describes how incorporating mathematical modeling activities and projects, that are designed to reflect authentic engineering experience, into engineering classes has the potential to enhance and tap the diverse strengths of students who come from a variety of backgrounds. Based on the experience of a cadre of engineering and education professors who were at Purdue University during a major curriculum reform effort, this book provides a case study of the Purdue experience, which in part launched the historical beginning of the Department of Engineering Education, the first program in the United States. The reader will be provided with critical activities and tools designed during the project, and the book will be written in a way to help the reader adapt the work to their own situations. More Detail About the Content The NSF-funded Small Group Mathematical Modeling for Improved Gender Equity (SGMM) Project featured activities that require students to work in small technical teams to design mathematical models in response to engineering-related problems. Students produce a product for a specified client who communicates an explicitly stated need. Because the activities are designed such that the mathematical model is the answer/product, students’ mathematical thinking is revealed, providing data for formative and evaluative assessment of the curriculum innovation. The activities and the data derived from the use of the activities acted as a seeds for system reform, which resulted in changes in practice, perspectives and beliefs on the parts of engineering and education professors, and graduate researcher assistants. The curriculum reform was initiated and stud...
Models and Modeling
Author: Myint Swe Khine
Publisher: Springer Science & Business Media
ISBN: 9400704496
Category : Science
Languages : en
Pages : 289
Book Description
The process of developing models, known as modeling, allows scientists to visualize difficult concepts, explain complex phenomena and clarify intricate theories. In recent years, science educators have greatly increased their use of modeling in teaching, especially real-time dynamic modeling, which is central to a scientific investigation. Modeling in science teaching is being used in an array of fields, everything from primary sciences to tertiary chemistry to college physics, and it is sure to play an increasing role in the future of education. Models and Modeling: Cognitive Tools for Scientific Enquiry is a comprehensive introduction to the use of models and modeling in science education. It identifies and describes many different modeling tools and presents recent applications of modeling as a cognitive tool for scientific enquiry.
Publisher: Springer Science & Business Media
ISBN: 9400704496
Category : Science
Languages : en
Pages : 289
Book Description
The process of developing models, known as modeling, allows scientists to visualize difficult concepts, explain complex phenomena and clarify intricate theories. In recent years, science educators have greatly increased their use of modeling in teaching, especially real-time dynamic modeling, which is central to a scientific investigation. Modeling in science teaching is being used in an array of fields, everything from primary sciences to tertiary chemistry to college physics, and it is sure to play an increasing role in the future of education. Models and Modeling: Cognitive Tools for Scientific Enquiry is a comprehensive introduction to the use of models and modeling in science education. It identifies and describes many different modeling tools and presents recent applications of modeling as a cognitive tool for scientific enquiry.
Modeling Students' Mathematical Modeling Competencies
Author: Richard Lesh
Publisher: Springer Science & Business Media
ISBN: 9400762712
Category : Education
Languages : en
Pages : 635
Book Description
Modeling Students’ Mathematical Modeling Competencies offers welcome clarity and focus to the international research and professional community in mathematics, science, and engineering education, as well as those involved in the sciences of teaching and learning these subjects.
Publisher: Springer Science & Business Media
ISBN: 9400762712
Category : Education
Languages : en
Pages : 635
Book Description
Modeling Students’ Mathematical Modeling Competencies offers welcome clarity and focus to the international research and professional community in mathematics, science, and engineering education, as well as those involved in the sciences of teaching and learning these subjects.
Mathematical Modeling in Science and Engineering
Author: Ismael Herrera
Publisher: John Wiley & Sons
ISBN: 1118207203
Category : Technology & Engineering
Languages : en
Pages : 259
Book Description
A powerful, unified approach to mathematical and computational modeling in science and engineering Mathematical and computational modeling makes it possible to predict the behavior of a broad range of systems across a broad range of disciplines. This text guides students and professionals through the axiomatic approach, a powerful method that will enable them to easily master the principle types of mathematical and computational models used in engineering and science. Readers will discover that this axiomatic approach not only enables them to systematically construct effective models, it also enables them to apply these models to any macroscopic physical system. Mathematical Modeling in Science and Engineering focuses on models in which the processes to be modeled are expressed as systems of partial differential equations. It begins with an introductory discussion of the axiomatic formulation of basic models, setting the foundation for further topics such as: Mechanics of classical and non-classical continuous systems Solute transport by a free fluid Flow of a fluid in a porous medium Multiphase systems Enhanced oil recovery Fluid mechanics Throughout the text, diagrams are provided to help readers visualize and better understand complex mathematical concepts. A set of exercises at the end of each chapter enables readers to put their new modeling skills into practice. There is also a bibliography in each chapter to facilitate further investigation of individual topics. Mathematical Modeling in Science and Engineering is ideal for both students and professionals across the many disciplines of science and engineering that depend on mathematical and computational modeling to predict and understand complex systems.
Publisher: John Wiley & Sons
ISBN: 1118207203
Category : Technology & Engineering
Languages : en
Pages : 259
Book Description
A powerful, unified approach to mathematical and computational modeling in science and engineering Mathematical and computational modeling makes it possible to predict the behavior of a broad range of systems across a broad range of disciplines. This text guides students and professionals through the axiomatic approach, a powerful method that will enable them to easily master the principle types of mathematical and computational models used in engineering and science. Readers will discover that this axiomatic approach not only enables them to systematically construct effective models, it also enables them to apply these models to any macroscopic physical system. Mathematical Modeling in Science and Engineering focuses on models in which the processes to be modeled are expressed as systems of partial differential equations. It begins with an introductory discussion of the axiomatic formulation of basic models, setting the foundation for further topics such as: Mechanics of classical and non-classical continuous systems Solute transport by a free fluid Flow of a fluid in a porous medium Multiphase systems Enhanced oil recovery Fluid mechanics Throughout the text, diagrams are provided to help readers visualize and better understand complex mathematical concepts. A set of exercises at the end of each chapter enables readers to put their new modeling skills into practice. There is also a bibliography in each chapter to facilitate further investigation of individual topics. Mathematical Modeling in Science and Engineering is ideal for both students and professionals across the many disciplines of science and engineering that depend on mathematical and computational modeling to predict and understand complex systems.
Teaching of Mathematical Modelling and Applications
Author: Mogens Niss
Publisher: Prentice Hall
ISBN: 9780138920685
Category : Mathematics
Languages : en
Pages : 427
Book Description
Presents a resume of the papers presented at the 4th International Conference on the Teaching of Mathematical Modelling and Applications. It presents a distillation of the experience, views and ideas of leading researchers, lecturers and teachers in the field.
Publisher: Prentice Hall
ISBN: 9780138920685
Category : Mathematics
Languages : en
Pages : 427
Book Description
Presents a resume of the papers presented at the 4th International Conference on the Teaching of Mathematical Modelling and Applications. It presents a distillation of the experience, views and ideas of leading researchers, lecturers and teachers in the field.
Practical Model-Based Systems Engineering
Author: Jose L. Fernandez
Publisher: Artech House
ISBN: 1630815810
Category : Technology & Engineering
Languages : en
Pages : 259
Book Description
This comprehensive resource provides systems engineers and practitioners with the analytic, design and modeling tools of the Model-Based Systems Engineering (MBSE) methodology of Integrated Systems Engineering (ISE) and Pipelines of Processes in Object Oriented Architectures (PPOOA) methodology. This methodology integrates model based systems and software engineering approaches for the development of complex products, including aerospace, robotics and energy domains applications. Readers learn how to synthesize physical architectures using design heuristics and trade-off analysis. The book provides information about how to identify, classify and specify the system requirements of a new product or service. Using Systems Modeling Language (SysML) constructs, readers will be able to apply ISE & PPOOA methodology in the engineering activities of their own systems.
Publisher: Artech House
ISBN: 1630815810
Category : Technology & Engineering
Languages : en
Pages : 259
Book Description
This comprehensive resource provides systems engineers and practitioners with the analytic, design and modeling tools of the Model-Based Systems Engineering (MBSE) methodology of Integrated Systems Engineering (ISE) and Pipelines of Processes in Object Oriented Architectures (PPOOA) methodology. This methodology integrates model based systems and software engineering approaches for the development of complex products, including aerospace, robotics and energy domains applications. Readers learn how to synthesize physical architectures using design heuristics and trade-off analysis. The book provides information about how to identify, classify and specify the system requirements of a new product or service. Using Systems Modeling Language (SysML) constructs, readers will be able to apply ISE & PPOOA methodology in the engineering activities of their own systems.
Modeling and Simulation Techniques in Structural Engineering
Author: Samui, Pijush
Publisher: IGI Global
ISBN: 152250589X
Category : Technology & Engineering
Languages : en
Pages : 544
Book Description
The development of new and effective analytical and numerical models is essential to understanding the performance of a variety of structures. As computational methods continue to advance, so too do their applications in structural performance modeling and analysis. Modeling and Simulation Techniques in Structural Engineering presents emerging research on computational techniques and applications within the field of structural engineering. This timely publication features practical applications as well as new research insights and is ideally designed for use by engineers, IT professionals, researchers, and graduate-level students.
Publisher: IGI Global
ISBN: 152250589X
Category : Technology & Engineering
Languages : en
Pages : 544
Book Description
The development of new and effective analytical and numerical models is essential to understanding the performance of a variety of structures. As computational methods continue to advance, so too do their applications in structural performance modeling and analysis. Modeling and Simulation Techniques in Structural Engineering presents emerging research on computational techniques and applications within the field of structural engineering. This timely publication features practical applications as well as new research insights and is ideally designed for use by engineers, IT professionals, researchers, and graduate-level students.
Engineering in K-12 Education
Author: National Research Council
Publisher: National Academies Press
ISBN: 030914471X
Category : Education
Languages : en
Pages : 595
Book Description
Engineering education in K-12 classrooms is a small but growing phenomenon that may have implications for engineering and also for the other STEM subjects-science, technology, and mathematics. Specifically, engineering education may improve student learning and achievement in science and mathematics, increase awareness of engineering and the work of engineers, boost youth interest in pursuing engineering as a career, and increase the technological literacy of all students. The teaching of STEM subjects in U.S. schools must be improved in order to retain U.S. competitiveness in the global economy and to develop a workforce with the knowledge and skills to address technical and technological issues. Engineering in K-12 Education reviews the scope and impact of engineering education today and makes several recommendations to address curriculum, policy, and funding issues. The book also analyzes a number of K-12 engineering curricula in depth and discusses what is known from the cognitive sciences about how children learn engineering-related concepts and skills. Engineering in K-12 Education will serve as a reference for science, technology, engineering, and math educators, policy makers, employers, and others concerned about the development of the country's technical workforce. The book will also prove useful to educational researchers, cognitive scientists, advocates for greater public understanding of engineering, and those working to boost technological and scientific literacy.
Publisher: National Academies Press
ISBN: 030914471X
Category : Education
Languages : en
Pages : 595
Book Description
Engineering education in K-12 classrooms is a small but growing phenomenon that may have implications for engineering and also for the other STEM subjects-science, technology, and mathematics. Specifically, engineering education may improve student learning and achievement in science and mathematics, increase awareness of engineering and the work of engineers, boost youth interest in pursuing engineering as a career, and increase the technological literacy of all students. The teaching of STEM subjects in U.S. schools must be improved in order to retain U.S. competitiveness in the global economy and to develop a workforce with the knowledge and skills to address technical and technological issues. Engineering in K-12 Education reviews the scope and impact of engineering education today and makes several recommendations to address curriculum, policy, and funding issues. The book also analyzes a number of K-12 engineering curricula in depth and discusses what is known from the cognitive sciences about how children learn engineering-related concepts and skills. Engineering in K-12 Education will serve as a reference for science, technology, engineering, and math educators, policy makers, employers, and others concerned about the development of the country's technical workforce. The book will also prove useful to educational researchers, cognitive scientists, advocates for greater public understanding of engineering, and those working to boost technological and scientific literacy.
A Framework for K-12 Science Education
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309214459
Category : Education
Languages : en
Pages : 400
Book Description
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
Publisher: National Academies Press
ISBN: 0309214459
Category : Education
Languages : en
Pages : 400
Book Description
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.