Modeling Phase and Sorption Equilibria Using First Principles Simulations

Modeling Phase and Sorption Equilibria Using First Principles Simulations PDF Author: Himanshu Goel
Publisher:
ISBN:
Category :
Languages : en
Pages : 177

Get Book Here

Book Description
To capture the underlying chemistry and physics of a system on electronic structure platform, it is necessary to accurately describe the intermolecular interactions such as repulsion, polarization, hydrogen bonding, and van der Waals interactions. Among these interactions, van der Waals (dispersion) interactions are weak in nature as compare to covalent bonds and hydrogen bonding, but it is physically and chemically very important in accurately predicting condensed phase properties such as vapor liquid equilibria(VLE). This presents a significant challenge in modeling VLE using a first principles approach. However, recent developments in dispersion corrected (DFT-D3) and nonlocal density functionals can model dispersion interactions with reasonable accuracy. Here, we will present some of the results that quantify the efficacy of recent density functionals in predicting phase equilibria of molecular systems via first principle Monte Carlo (FPMC) simulations. Our aim is to assess the performance of several density functional by determining VLE, critical properties, dimer potential energy curves, vibrational spectra, and structural properties. The functional used in our study includes PBE-D3, BLYP-D3, rVV10, PBE0-D3, and M062X-D3. In addition, we have used the second order Møller-Plesset perturbation theory (MP2) method for computing the density of argon at a single temperature. The organic compounds considered for this study involves argon, CO2, SO2, and various hydroflurocarbons (R14, R134a, CF3H, CF2H2, CFH3) molecules. Additionally, the development of new materials, ionic liquids, and modification of industrial processes are an ongoing effort by researchers to efficiently capture acidic gases. Our ability to model these sorption processes using a first principles approach can have a significant impact in speeding up the discovery process. In our work, we have predicted CO2 solubility in triethyl(butyl)phosphonium ionic liquid via FPMC simulations. Our results reveal the infrared spectra, structural and transport properties for pure ionic liquid and its mixture with CO2 through ab initio molecular dynamics simulations.

Modeling Phase and Sorption Equilibria Using First Principles Simulations

Modeling Phase and Sorption Equilibria Using First Principles Simulations PDF Author: Himanshu Goel
Publisher:
ISBN:
Category :
Languages : en
Pages : 177

Get Book Here

Book Description
To capture the underlying chemistry and physics of a system on electronic structure platform, it is necessary to accurately describe the intermolecular interactions such as repulsion, polarization, hydrogen bonding, and van der Waals interactions. Among these interactions, van der Waals (dispersion) interactions are weak in nature as compare to covalent bonds and hydrogen bonding, but it is physically and chemically very important in accurately predicting condensed phase properties such as vapor liquid equilibria(VLE). This presents a significant challenge in modeling VLE using a first principles approach. However, recent developments in dispersion corrected (DFT-D3) and nonlocal density functionals can model dispersion interactions with reasonable accuracy. Here, we will present some of the results that quantify the efficacy of recent density functionals in predicting phase equilibria of molecular systems via first principle Monte Carlo (FPMC) simulations. Our aim is to assess the performance of several density functional by determining VLE, critical properties, dimer potential energy curves, vibrational spectra, and structural properties. The functional used in our study includes PBE-D3, BLYP-D3, rVV10, PBE0-D3, and M062X-D3. In addition, we have used the second order Møller-Plesset perturbation theory (MP2) method for computing the density of argon at a single temperature. The organic compounds considered for this study involves argon, CO2, SO2, and various hydroflurocarbons (R14, R134a, CF3H, CF2H2, CFH3) molecules. Additionally, the development of new materials, ionic liquids, and modification of industrial processes are an ongoing effort by researchers to efficiently capture acidic gases. Our ability to model these sorption processes using a first principles approach can have a significant impact in speeding up the discovery process. In our work, we have predicted CO2 solubility in triethyl(butyl)phosphonium ionic liquid via FPMC simulations. Our results reveal the infrared spectra, structural and transport properties for pure ionic liquid and its mixture with CO2 through ab initio molecular dynamics simulations.

Modeling Phase and Sorption Equilibria Using First Principles Simulations

Modeling Phase and Sorption Equilibria Using First Principles Simulations PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
To capture the underlying chemistry and physics of a system on electronic structure platform, it is necessary to accurately describe the intermolecular interactions such as repulsion, polarization, hydrogen bonding, and van der Waals interactions. Among these interactions, van der Waals (dispersion) interactions are weak in nature as compare to covalent bonds and hydrogen bonding, but it is physically and chemically very important in accurately predicting condensed phase properties such as Vapor liquid equilibria. This presents a significant challenge in modeling VLE using a first principles approach. However, recent developments in dispersion corrected (DFT-D3) and nonlocal density functionals can model dispersion interactions with reasonable accuracy. Here, we will present some of results that quantify efficacy of recent density functionals in predicting phase equilibria of molecular systems via first principle Monte Carlo (FPMC) simulations. Our aim is to assess the performance of several density functional by determining VLE, critical properties, dimer potential energy curves, vibrational spectra, and structural properties. The functional used in our study includes PBE-D3, BLYP-D3, rVV10, PBE0- D3, and M062X-D3. In addition, we have used the second order Møller-Plesset perturbation theory (MP2) method for computing density of argon at single temperature. The organic compounds considered for this study involves argon, CO2, SO2, and various hydroflurocarbons (R14, R134a, CF3H, CF2H2, CFH3) molecules. Additionally, the development of new materials, ionic liquids, and modification of industrial processes are an ongoing effort by researchers to efficiently capture acidic gases. Our ability to model these sorption processes using a first principles approach can have significant impact in speeding up the discovery process. In our work, we have predicted CO2 solubility in triethyl(but

Adsorption Calculations and Modelling

Adsorption Calculations and Modelling PDF Author: Howard Brenner
Publisher: Elsevier
ISBN: 148329224X
Category : Technology & Engineering
Languages : en
Pages : 257

Get Book Here

Book Description
'Adsorption Calculations and Modelling' provides readers with practical, useful information about how to make adsorption calculations and formulate models describing adsorption processes. Unlike most books on this subject, this book treats both gas phase adsorption and liquid phase adsorption with equal emphasis, and supplies a rigorous treatment of multi-component adsorption. It also covers adsorption applications in environmental applications including the use of impregnated adsorbents for protection against toxic gases and carbon adsorption in water and wastewater treatment. Explores the most up-to-date information on multicomponent adsorption Details adsorption applications in environmental application Explains the fundamentals of adsorption calculation in a simple, straightforward manner.

Aqueous Phase Adsorption

Aqueous Phase Adsorption PDF Author: Jayant K Singh
Publisher: CRC Press
ISBN: 1351272519
Category : Science
Languages : en
Pages : 316

Get Book Here

Book Description
This book covers theoretical aspects of adsorption, followed by an introduction to molecular simulations and other numerical techniques that have become extremely useful as an engineering tool in recent times to understand the interplay of different mechanistic steps of adsorption. Further, the book provides brief experimental methodologies to use, test, and evaluate different types of adsorbents for water pollutants. Through different chapters contributed by accomplished researchers working in the broad area of adsorption, this book provides the necessary fundamental background required for an academician, industrial scientist or engineer to initiate studies in this area. Key Features Explores fundamentals of adsorption-based separation Provides physical insight into aqueous phase adsorption Includes theory, molecular and mesoscopic level simulation techniques and experiments Describes molecular simulations and lattice-Boltzmann method based models for aqueous phase adsorption Presents state-of-art experimental works particularly addressing removal of "emerging pollutants" from aqueous phase

Foundations of Molecular Modeling and Simulation

Foundations of Molecular Modeling and Simulation PDF Author: Edward J. Maginn
Publisher: Springer Nature
ISBN: 9813366397
Category : Science
Languages : en
Pages : 228

Get Book Here

Book Description
This highly informative and carefully presented book comprises select proceedings of Foundation for Molecular Modelling and Simulation (FOMMS 2018). The contents are written by invited speakers centered on the theme Innovation for Complex Systems. It showcases new developments and applications of computational quantum chemistry, statistical mechanics, molecular simulation and theory, and continuum and engineering process simulation. This volume will serve as a useful reference to researchers, academicians and practitioners alike.

Modelling and Simulation in the Science of Micro- and Meso-Porous Materials

Modelling and Simulation in the Science of Micro- and Meso-Porous Materials PDF Author: C.Richard A. Catlow
Publisher: Elsevier
ISBN: 0128050586
Category : Technology & Engineering
Languages : en
Pages : 372

Get Book Here

Book Description
Modelling and Simulation in the Science of Micro- and Meso-Porous Materials addresses significant developments in the field of micro- and meso-porous science. The book includes sections on Structure Modeling and Prediction, Synthesis, Nucleation and Growth, Sorption and Separation processes, Reactivity and Catalysis, and Fundamental Developments in Methodology to give a complete overview of the techniques currently utilized in this rapidly advancing field. It thoroughly addresses the major challenges in the field of microporous materials, including the crystallization mechanism of porous materials and rational synthesis of porous materials with controllable porous structures and compositions. New applications in emerging areas are also covered, including biomass conversion, C1 chemistry, and CO2 capture. Authored and edited by experts in the field of micro- and meso-porous materials Includes introductory material and background both on the science of microporous materials and on the techniques employed in contemporary modeling studies Rigorous enough for scientists conducting related research, but also accessible to graduate students in chemistry, chemical engineering, and materials science

Fundamentals of Adsorption

Fundamentals of Adsorption PDF Author: M Suzuki
Publisher: Elsevier
ISBN: 0080887724
Category : Technology & Engineering
Languages : en
Pages : 819

Get Book Here

Book Description
Fundamentals of Adsorption contains 2 plenary lectures and 96 selected papers from the IVth International Conference, Kyoto, May, 1992. The topics cover a wide range of studies from fundamentals to applications: characterization of porous adsorbents, molecular simulation, adsorption isotherms, diffusion in adsorbents, breakthrough detection, chromatography, pressure swing operation, etc. Model studies on adsorption, surface characterization, microporosimetry, molecular simulations of equilibrium and diffusion, computer simulation of adsorption beds, and many theoretical studies are also included. Special attention is given to: bulk gas separation and purification, solvent recovery, bioproduct separation, environmental pollution control, methane storage, adsorption cooling and resources recovery.

Handbook of Materials Modeling

Handbook of Materials Modeling PDF Author: Sidney Yip
Publisher: Springer Science & Business Media
ISBN: 1402032862
Category : Science
Languages : en
Pages : 2903

Get Book Here

Book Description
The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.

Selective Adsorption and Phase Equilibria of Confined Fluids

Selective Adsorption and Phase Equilibria of Confined Fluids PDF Author: Susanne Lynn Sowers
Publisher:
ISBN:
Category :
Languages : en
Pages : 316

Get Book Here

Book Description


Materials Science of Membranes for Gas and Vapor Separation

Materials Science of Membranes for Gas and Vapor Separation PDF Author: Benny Freeman
Publisher: John Wiley & Sons
ISBN: 9780470029046
Category : Technology & Engineering
Languages : en
Pages : 466

Get Book Here

Book Description
Materials Science of Membranes for Gas and Vapor Separation is a one-stop reference for the latest advances in membrane-based separation and technology. Put together by an international team of contributors and academia, the book focuses on the advances in both theoretical and experimental materials science and engineering, as well as progress in membrane technology. Special attention is given to comparing polymer and inorganic/organic separation and other emerging applications such as sensors. This book aims to give a balanced treatment of the subject area, allowing the reader an excellent overall perspective of new theoretical results that can be applied to advanced materials, as well as the separation of polymers. The contributions will provide a compact source of relevant and timely information and will be of interest to government, industrial and academic polymer chemists, chemical engineers and materials scientists, as well as an ideal introduction to students.