Modeling of Compressed Air Energy Storage for Power System Performance Studies

Modeling of Compressed Air Energy Storage for Power System Performance Studies PDF Author: Ivan Calero
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
In the effective integration of large renewable generation for grid scale applications, pumped-storage hydro and Compressed Air Energy Storage (CAES) are currently economically and technically feasible alternatives to properly manage the intrinsic intermittency of energy sources such as wind or solar, with CAES being less restrictive in terms of its location. Furthermore, the relative fast response, and the possibility of physically decoupling the charging and discharging drive trains interfacing the grid through synchronous machines make CAES a suitable asset to provide ancillary services in addition to arbitrate, such as black start, spinning reserve, frequency regulation, and/or voltage regulation. Nevertheless, although the economic value of CAES having multiple stream revenues has been studied in the context of planning and operation of power systems, the actual impact of CAES facilities on the electrical grids have not been properly addressed in the literature, in part due to the lack of suitable models. The existing CAES models proposed for power system studies fail to represent the dynamics, nonlinear relations, and physical restrictions of the main mechanical subsystems, by proposing simplifications that result in unrealistic dynamic responses and operating points when considering the entire CAES operating range, as is required in most ancillary services or during grid disturbances. Furthermore, the detail of these models and the controls used are inconsistent with the state-of-the-art modeling of other storage technologies such as batteries and flywheels. Hence, in order to bridge the gap in CAES modeling and control, this thesis propose a comprehensive physically-based dynamic mathematical model of a diabatic CAES system, considering two independent synchronous machines as interface with the grid, which allows simultaneous charging and discharging of the cavern, such as the recently inaugurated 1.75 MW CAES plant in Goderich, Ontario. Detailed and simplified models are proposed based on the configuration of the Huntorf plant, in Germany, which is one of the only two existing large CAES facilities currently operating in the world. The system modeled comprises a multi-stage compressor with intercoolers and aftercooler, driven by a synchronous motor in the charging stage, an underground cavern as storage reservoir, a multi-stage expander with a recuperator and reheater between stages, and a synchronous generator in discharging mode, such as the aforementioned small CAES Ontario plant. The proposed thermodynamic-based dynamic models of the compressors and expanders allow calculating internal system variables, such as pressures, temperatures and power, some of which are used as controllable variables. Furthermore, different approximations to model the nonlinear relations between mass flow rate, pressure ratio, and rotor speed in the CAES compressors and expanders, determined by so called "maps", are proposed based on Neural Networks and physically-based nonlinear functions; these constrain the operation of the turbomachinery, but are usually ignored in existing models. A control strategy for active and reactive power of the CAES system is also proposed. The active power controller allows primary and secondary frequency regulation provision by the turbine and compressor. Special controllers are proposed to restrict the charging and discharging power of the turbine and compressor, to avoid pressure ratios that violate the restriction imposed by the cavern pressure. A surge detection controller for the compressor, and a controller that regulates the inlet temperature at each expansion stage are also presented, and these controls are complemented by a state of charge logic controller that shuts down the compressor or turbine when the cavern is fully charged or runs out of air, respectively. A coordinated droop-based reactive power control is also proposed for the parallel operation of the two synchronous machines, which is used to provide voltage regulation assuming both machines operate synchronized with grid. Finally, the implementation of a block-diagram based CAES model for transient stability studies in the DSATool's TSAT® software is presented, based on a generic model architecture of the different CAES system's components and their interrelations. The performance of the proposed models, with different levels of detail, are examined in various electrical system studies. First, the potential of a CAES system to provide primary and secondary frequency regulation in a test power system with high penetration of wind generation is evaluated in Simulink®, where the proposed CAES models are also compared with existing models. The voltage regulation, oscillation damping capability, and frequency and transient stability impact of CAES are also studied in a modified WSCC 9-bus test system using TSAT®. It is demonstrated that CAES is more effective than equivalent gas turbines to regulate frequency and voltage and damp low frequency oscillations, with the simultaneous charging and discharging operation significantly reducing the frequency deviation of the system in the case of large power variations in a wind farm. Furthermore, the effects on the overall frequency regulation performance of incorporating detailed models for some of the CAES components, such as expansion air valve, compressor and turbine maps and associated controls is also assessed, demonstrating how modeling these sub systems restricts the CAES response, especially in charging mode. Finally, the effect of the stage of charge control on the frequency stability of the system for different cavern sizes is investigated, concluding that if the power rating of the CAES system is large enough, small cavern sizes may not allow proper provision of frequency regulation.

Modeling of Compressed Air Energy Storage for Power System Performance Studies

Modeling of Compressed Air Energy Storage for Power System Performance Studies PDF Author: Ivan Calero
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
In the effective integration of large renewable generation for grid scale applications, pumped-storage hydro and Compressed Air Energy Storage (CAES) are currently economically and technically feasible alternatives to properly manage the intrinsic intermittency of energy sources such as wind or solar, with CAES being less restrictive in terms of its location. Furthermore, the relative fast response, and the possibility of physically decoupling the charging and discharging drive trains interfacing the grid through synchronous machines make CAES a suitable asset to provide ancillary services in addition to arbitrate, such as black start, spinning reserve, frequency regulation, and/or voltage regulation. Nevertheless, although the economic value of CAES having multiple stream revenues has been studied in the context of planning and operation of power systems, the actual impact of CAES facilities on the electrical grids have not been properly addressed in the literature, in part due to the lack of suitable models. The existing CAES models proposed for power system studies fail to represent the dynamics, nonlinear relations, and physical restrictions of the main mechanical subsystems, by proposing simplifications that result in unrealistic dynamic responses and operating points when considering the entire CAES operating range, as is required in most ancillary services or during grid disturbances. Furthermore, the detail of these models and the controls used are inconsistent with the state-of-the-art modeling of other storage technologies such as batteries and flywheels. Hence, in order to bridge the gap in CAES modeling and control, this thesis propose a comprehensive physically-based dynamic mathematical model of a diabatic CAES system, considering two independent synchronous machines as interface with the grid, which allows simultaneous charging and discharging of the cavern, such as the recently inaugurated 1.75 MW CAES plant in Goderich, Ontario. Detailed and simplified models are proposed based on the configuration of the Huntorf plant, in Germany, which is one of the only two existing large CAES facilities currently operating in the world. The system modeled comprises a multi-stage compressor with intercoolers and aftercooler, driven by a synchronous motor in the charging stage, an underground cavern as storage reservoir, a multi-stage expander with a recuperator and reheater between stages, and a synchronous generator in discharging mode, such as the aforementioned small CAES Ontario plant. The proposed thermodynamic-based dynamic models of the compressors and expanders allow calculating internal system variables, such as pressures, temperatures and power, some of which are used as controllable variables. Furthermore, different approximations to model the nonlinear relations between mass flow rate, pressure ratio, and rotor speed in the CAES compressors and expanders, determined by so called "maps", are proposed based on Neural Networks and physically-based nonlinear functions; these constrain the operation of the turbomachinery, but are usually ignored in existing models. A control strategy for active and reactive power of the CAES system is also proposed. The active power controller allows primary and secondary frequency regulation provision by the turbine and compressor. Special controllers are proposed to restrict the charging and discharging power of the turbine and compressor, to avoid pressure ratios that violate the restriction imposed by the cavern pressure. A surge detection controller for the compressor, and a controller that regulates the inlet temperature at each expansion stage are also presented, and these controls are complemented by a state of charge logic controller that shuts down the compressor or turbine when the cavern is fully charged or runs out of air, respectively. A coordinated droop-based reactive power control is also proposed for the parallel operation of the two synchronous machines, which is used to provide voltage regulation assuming both machines operate synchronized with grid. Finally, the implementation of a block-diagram based CAES model for transient stability studies in the DSATool's TSAT® software is presented, based on a generic model architecture of the different CAES system's components and their interrelations. The performance of the proposed models, with different levels of detail, are examined in various electrical system studies. First, the potential of a CAES system to provide primary and secondary frequency regulation in a test power system with high penetration of wind generation is evaluated in Simulink®, where the proposed CAES models are also compared with existing models. The voltage regulation, oscillation damping capability, and frequency and transient stability impact of CAES are also studied in a modified WSCC 9-bus test system using TSAT®. It is demonstrated that CAES is more effective than equivalent gas turbines to regulate frequency and voltage and damp low frequency oscillations, with the simultaneous charging and discharging operation significantly reducing the frequency deviation of the system in the case of large power variations in a wind farm. Furthermore, the effects on the overall frequency regulation performance of incorporating detailed models for some of the CAES components, such as expansion air valve, compressor and turbine maps and associated controls is also assessed, demonstrating how modeling these sub systems restricts the CAES response, especially in charging mode. Finally, the effect of the stage of charge control on the frequency stability of the system for different cavern sizes is investigated, concluding that if the power rating of the CAES system is large enough, small cavern sizes may not allow proper provision of frequency regulation.

Extensible Modeling of Compressed Air Energy Storage Systems

Extensible Modeling of Compressed Air Energy Storage Systems PDF Author: Siddharth Atul Kakodkar
Publisher:
ISBN:
Category : Compressed air
Languages : en
Pages : 84

Get Book Here

Book Description
There is a growing number of renewable energy sources that can supply power to the electrical grid. These renewable sources of energy are intermittent in nature and therefore the transition from using fossil fuels to green renewables requires the use of energy storage technologies to maintain and regulate a reliable supply of electricity. Energy storage technologies play a key role in allowing energy providers to provide a steady supply of electricity by balancing the fluctuations caused by sources of renewable energy. Compressed Air Energy Storage (CAES) is a promising utility scale energy storage technology that is suitable for long-duration energy storage and can be used to integrate renewable energy (such as Wind energy) to the electrical grid. CAES technologies can be broadly classified into 3 types: Diabatic-CAES (D-CAES), Adiabatic-CAES (A-CAES) and Isothermal-CAES (I-CAES). The author first performs a review on the different types of energy storage available today and a literature review on of CAES system level models, Turbomachinery models, and cavern models. After the gaps in literature are identified, the author then develops a flexible and extensible model of an A-CAES system, which can be used a CAES plant designer to obtain a first order thermodynamic evaluation of a particular plant configuration. The developed model is scalable, modular and can be connected to a control strategy. The model is able to capture time dependent losses and part load behavior of turbomachinery. The modeling methodology is focused around keeping the model extensible, i.e. components and their fidelity can be easily altered for the model's future growth. The components modeled are the compressor, the turbine, the induction motor, the generator, and a thermal energy storage device to the make the CAES plant adiabatic. The model is created using the Matlab/Simulinkʼ software, which is commonly used tool for modeling. The A-CAES plant model was simulated for 23.3 hours comprising of 12.47 hours of charging using a mass flow rate of 107.5 kg/s, 8 hours of storage and 2.83 hours of discharge using a mass flow rate of 400 kg/s. The maximum and minimum cavern pressures were 72 bar and 42 bar respectively. The obtained round trip efficiency is 76.24%. Additionally, the turbine start-up time was found to be 760 seconds. The compressor train average efficiency was calculated as 70%, the expansion train average efficiency was calculated as 81% and the TES efficiency was calculated as 91%. The models simulated the behavior of an A-CAES plant accurately with the compressor and turbine showing a close resemblance to their performance maps. The results indicate that Adiabatic-CAES is a promising and emerging technology. However, further research and development is required beyond this thesis; specifically, in the area of thermal energy storage and management. Finally, the author makes recommendations on how to further improve upon the achieved objectives in this work.

Gravity Energy Storage

Gravity Energy Storage PDF Author: Asmae Berrada
Publisher: Elsevier
ISBN: 0128172924
Category : Technology & Engineering
Languages : en
Pages : 186

Get Book Here

Book Description
Gravity Energy Storage provides a comprehensive analysis of a novel energy storage system that is based on the working principle of well-established, pumped hydro energy storage, but that also recognizes the differences and benefits of the new gravity system. This book provides coverage of the development, feasibility, design, performance, operation, and economics associated with the implementation of such storage technology. In addition, a number of modeling approaches are proposed as a solution to various difficulties, such as proper sizing, application, value and optimal design of the system. The book includes both technical and economic aspects to guide the realization of this storage system in the right direction. Finally, political considerations and barriers are addressed to complement this work. Discusses the feasibility of gravity energy storage technology Analyzes the storage system by modelling various system components Uniquely discusses the characteristics of this technology, giving consideration to its use as an attractive solution to the integration of large-scale, intermittent renewable energy

Energy and Sustainable Futures

Energy and Sustainable Futures PDF Author: Iosif Mporas
Publisher: Springer Nature
ISBN: 3030639169
Category : Technology & Engineering
Languages : en
Pages : 274

Get Book Here

Book Description
This open access book presents papers displayed in the 2nd International Conference on Energy and Sustainable Futures (ICESF 2020), co-organised by the University of Hertfordshire and the University Alliance DTA in Energy. The research included in this book covers a wide range of topics in the areas of energy and sustainability including: • ICT and control of energy;• conventional energy sources;• energy governance;• materials in energy research;• renewable energy; and• energy storage. The book offers a holistic view of topics related to energy and sustainability, making it of interest to experts in the field, from industry and academia.

Compressed Air Energy Storage (CAES) RAM

Compressed Air Energy Storage (CAES) RAM PDF Author: Harry W. Brown
Publisher:
ISBN:
Category : Compressed air
Languages : en
Pages : 0

Get Book Here

Book Description
Compressed Air Energy Storage (CAES) technology represents an economically attractive and technically proven approach to obtaining overall cost-effectiveness in power generation. A key to realizing the load-leveling benefits offered by CAES is the achievement of good reliability, availability, and maintainability (RAM) performance by the system and its components. With this in mind, the Electric Power Research Institute (EPRI) sponsored the development of RAM models of the three generic types of CAES units: salt caverns, rock caverns, and aquifers. The objectives in developing these models were to evaluate the expected RAM performance of design alternatives, to investigate trade-offs among design parameters affecting RAM, and to develop an analysis tool for use by utilities interested in building CAES plants. This paper presents the generic models developed by ARINC Research Corporation, together with some initial evaluation results.

Compact Heat Exchangers

Compact Heat Exchangers PDF Author: Alexander Louis London
Publisher: CRC Press
ISBN: 9781560320128
Category : Heat exchangers
Languages : en
Pages : 798

Get Book Here

Book Description
Heat exchangers are a crucial part of aerospace, marine, cryogenic and refrigeration technology. These essays cover such topics as complicated flow arrangements, complex extended surfaces, two-phase flow and irreversibility in heat exchangers, and single-phase heat transfer.

Mechanical Energy Storage Technologies

Mechanical Energy Storage Technologies PDF Author: Ahmad Arabkoohsar
Publisher: Academic Press
ISBN: 0128226617
Category : Science
Languages : en
Pages : 204

Get Book Here

Book Description
Mechanical Energy Storage Technologies presents a comprehensive reference that systemically describes various mechanical energy storage technologies. State-of-the-art energy storage systems are outlined with basic formulation, utility, and detailed dynamic modeling examples, making each chapter a standalone module on storage technology. Each chapter includes a detailed mathematical model of the given energy storage system along with solved and unsolved examples, case studies, and prospects among emerging technologies and solutions for future energy systems. Giving a detailed understanding of why mechanical energy storage systems are useful, this book is a beneficial reference for anyone researching and working in mechanical energy storage systems. Covers advances in mechanical energy storage systems, both electricity and heat, in one reference Includes solved and unsolved examples for each storage technology Offers end-of-chapter summaries for each application Includes detailed mathematical models of each energy storage system examined

Progress in Exergy, Energy, and the Environment

Progress in Exergy, Energy, and the Environment PDF Author: Ibrahim Dincer
Publisher: Springer
ISBN: 3319046810
Category : Technology & Engineering
Languages : en
Pages : 1055

Get Book Here

Book Description
This thorough and highly relevant volume examines exergy, energy and the environment in the context of energy systems and applications and as a potential tool for design, analysis, optimization. It further considers their role in minimizing and/or eliminating environmental impacts and providing for sustainable development. In this regard, several key topics ranging from the basics of the thermodynamic concepts to advanced exergy analysis techniques in a wide range of applications are covered.

Handbook on Battery Energy Storage System

Handbook on Battery Energy Storage System PDF Author: Asian Development Bank
Publisher: Asian Development Bank
ISBN: 9292614711
Category : Technology & Engineering
Languages : en
Pages : 123

Get Book Here

Book Description
This handbook serves as a guide to deploying battery energy storage technologies, specifically for distributed energy resources and flexibility resources. Battery energy storage technology is the most promising, rapidly developed technology as it provides higher efficiency and ease of control. With energy transition through decarbonization and decentralization, energy storage plays a significant role to enhance grid efficiency by alleviating volatility from demand and supply. Energy storage also contributes to the grid integration of renewable energy and promotion of microgrid.

Steady State and Time Dependent Compressed Air Energy Storage Model Validated with Huntorf Operational Data and Investigation of Hydrogen Options for a Sustainable Energy Supply

Steady State and Time Dependent Compressed Air Energy Storage Model Validated with Huntorf Operational Data and Investigation of Hydrogen Options for a Sustainable Energy Supply PDF Author: Friederike Kaiser
Publisher: Cuvillier Verlag
ISBN: 3736963416
Category : Technology & Engineering
Languages : en
Pages : 164

Get Book Here

Book Description
Wind power and photovoltaic energy play a significant role in sustainable energy systems. However, these two renewable energy sources do not generate electrical energy on demand and are subject to natural fluctuations. Thus, the need for compensatory measures arises. Compressed air energy storage power plants (CAES) are a possible solution to providing negative and positive control energy in the electric grid. However, in contrast to other energy storage devices such as pumped hydro energy storage or batteries, the storage medium compressed air hardly contains any energy (or more precisely: enthalpy). Yet, compressed air storage allows the operation of highly efficient gas turbines, which are not only particularly fast available but also achieve better efficiency than combined cycle power plants used today, as illustrated by the example of the modern gas and steam power plant Irsching with ηtc = 60%from 2011 compared to the 20 years older McIntosh CAES with ηtc = 82.4 %. In this thesis, the calculation methods for the thermodynamics of the CAES process are presented and validated by measured data from the operations of the CAES power plant Huntorf. Both the steady state and the dynamic (time-dependent) analyses of the process take place. The characteristic value efficiency is discussed in detail, since numerous different interpretations for CAES exist in the literature. A new calculation method for the electric energy storage efficiency is presented, and a method for the calculation of an economically equivalent electricity storage efficiency is developed. Consideration is given to the transformation of the CAES process into a hydrogen-driven and, thus, greenhouse gas-free process. Finally, a model CAES system is tested in a 100 % renewable model environment. Consequently, it can be stated that in the steady-state thermodynamic calculation in particular, the consideration of realistic isentropic efficiencies of compressors and turbines is essential to correctly estimate the characteristic values of the process. Furthermore, a steadystate view should always be accompanied by dynamic considerations, since some process characteristics are always time-dependent. The simulation shows that by mapping transient operating conditions, the overall efficiency of the system must be corrected downwards. Nevertheless, in the model environment of a 100 % renewable energy system, it has been shown that a CAES is a useful addition that can provide long-term energy storage.