Author: Vitor R. Carvalho
Publisher: Springer Science & Business Media
ISBN: 3642199550
Category : Computers
Languages : en
Pages : 111
Book Description
Everyday more than half of American adult internet users read or write email messages at least once. The prevalence of email has significantly impacted the working world, functioning as a great asset on many levels, yet at times, a costly liability. In an effort to improve various aspects of work-related communication, this work applies sophisticated machine learning techniques to a large body of email data. Several effective models are proposed that can aid with the prioritization of incoming messages, help with coordination of shared tasks, improve tracking of deadlines, and prevent disastrous information leaks. Carvalho presents many data-driven techniques that can positively impact work-related email communication and offers robust models that may be successfully applied to future machine learning tasks.
Modeling Intention in Email
Author: Vitor R. Carvalho
Publisher: Springer Science & Business Media
ISBN: 3642199550
Category : Computers
Languages : en
Pages : 111
Book Description
Everyday more than half of American adult internet users read or write email messages at least once. The prevalence of email has significantly impacted the working world, functioning as a great asset on many levels, yet at times, a costly liability. In an effort to improve various aspects of work-related communication, this work applies sophisticated machine learning techniques to a large body of email data. Several effective models are proposed that can aid with the prioritization of incoming messages, help with coordination of shared tasks, improve tracking of deadlines, and prevent disastrous information leaks. Carvalho presents many data-driven techniques that can positively impact work-related email communication and offers robust models that may be successfully applied to future machine learning tasks.
Publisher: Springer Science & Business Media
ISBN: 3642199550
Category : Computers
Languages : en
Pages : 111
Book Description
Everyday more than half of American adult internet users read or write email messages at least once. The prevalence of email has significantly impacted the working world, functioning as a great asset on many levels, yet at times, a costly liability. In an effort to improve various aspects of work-related communication, this work applies sophisticated machine learning techniques to a large body of email data. Several effective models are proposed that can aid with the prioritization of incoming messages, help with coordination of shared tasks, improve tracking of deadlines, and prevent disastrous information leaks. Carvalho presents many data-driven techniques that can positively impact work-related email communication and offers robust models that may be successfully applied to future machine learning tasks.
Next Generation Data Technologies for Collective Computational Intelligence
Author: Nik Bessis
Publisher: Springer Science & Business Media
ISBN: 3642203434
Category : Computers
Languages : en
Pages : 637
Book Description
This book focuses on next generation data technologies in support of collective and computational intelligence. The book brings various next generation data technologies together to capture, integrate, analyze, mine, annotate and visualize distributed data – made available from various community users – in a meaningful and collaborative for the organization manner. A unique perspective on collective computational intelligence is offered by embracing both theory and strategies fundamentals such as data clustering, graph partitioning, collaborative decision making, self-adaptive ant colony, swarm and evolutionary agents. It also covers emerging and next generation technologies in support of collective computational intelligence such as Web 2.0 social networks, semantic web for data annotation, knowledge representation and inference, data privacy and security, and enabling distributed and collaborative paradigms such as P2P, Grid and Cloud Computing due to the geographically dispersed and distributed nature of the data. The book aims to cover in a comprehensive manner the combinatorial effort of utilizing and integrating various next generations collaborative and distributed data technologies for computational intelligence in various scenarios. The book also distinguishes itself by assessing whether utilization and integration of next generation data technologies can assist in the identification of new opportunities, which may also be strategically fit for purpose.
Publisher: Springer Science & Business Media
ISBN: 3642203434
Category : Computers
Languages : en
Pages : 637
Book Description
This book focuses on next generation data technologies in support of collective and computational intelligence. The book brings various next generation data technologies together to capture, integrate, analyze, mine, annotate and visualize distributed data – made available from various community users – in a meaningful and collaborative for the organization manner. A unique perspective on collective computational intelligence is offered by embracing both theory and strategies fundamentals such as data clustering, graph partitioning, collaborative decision making, self-adaptive ant colony, swarm and evolutionary agents. It also covers emerging and next generation technologies in support of collective computational intelligence such as Web 2.0 social networks, semantic web for data annotation, knowledge representation and inference, data privacy and security, and enabling distributed and collaborative paradigms such as P2P, Grid and Cloud Computing due to the geographically dispersed and distributed nature of the data. The book aims to cover in a comprehensive manner the combinatorial effort of utilizing and integrating various next generations collaborative and distributed data technologies for computational intelligence in various scenarios. The book also distinguishes itself by assessing whether utilization and integration of next generation data technologies can assist in the identification of new opportunities, which may also be strategically fit for purpose.
New Challenges for Intelligent Information and Database Systems
Author: Ngoc Thanh Nguyen
Publisher: Springer Science & Business Media
ISBN: 3642199526
Category : Computers
Languages : en
Pages : 365
Book Description
The book consists of 35 extended chapters which have been based on selected submissions to the poster session organized during the 3rd Asian Conference on Intelligent Information and Database Systems (20-22 April 2011 in Daegu, Korea). The book is organized into four parts, which are information retrieval and management, data mining and computational intelligence, service composition and user-centered approach, and intelligent management and e-business, respectively. All chapters in the book discuss theoretical and practical issues related to integration of artificial intelligence and database technologies in order to develop various intelligent information systems in many different domains. Such combination of artificial intelligence and database technologies has been regarded as one of the important interdisciplinary subfields of modern computer science, due to the sustainable development of networked information systems. Especially, service-oriented architecture and global multimedia systems used on a number of different purpose call for these developments. The book will be of interest to postgraduate students, professors and practitioners in the areas of artificial intelligence and database systems to modern information environments. The editors hope that readers of this volume can find many inspiring ideas and influential practical examples and use them in their future work.
Publisher: Springer Science & Business Media
ISBN: 3642199526
Category : Computers
Languages : en
Pages : 365
Book Description
The book consists of 35 extended chapters which have been based on selected submissions to the poster session organized during the 3rd Asian Conference on Intelligent Information and Database Systems (20-22 April 2011 in Daegu, Korea). The book is organized into four parts, which are information retrieval and management, data mining and computational intelligence, service composition and user-centered approach, and intelligent management and e-business, respectively. All chapters in the book discuss theoretical and practical issues related to integration of artificial intelligence and database technologies in order to develop various intelligent information systems in many different domains. Such combination of artificial intelligence and database technologies has been regarded as one of the important interdisciplinary subfields of modern computer science, due to the sustainable development of networked information systems. Especially, service-oriented architecture and global multimedia systems used on a number of different purpose call for these developments. The book will be of interest to postgraduate students, professors and practitioners in the areas of artificial intelligence and database systems to modern information environments. The editors hope that readers of this volume can find many inspiring ideas and influential practical examples and use them in their future work.
User Modeling 2007
Author: Cristina Conati
Publisher: Springer
ISBN: 3540730788
Category : Computers
Languages : en
Pages : 503
Book Description
This book constitutes the refereed proceedings of the 11th International Conference on User Modeling, UM 2007, held in Corfu, Greece in July 2007. Coverage includes evaluating user/student modeling techniques, data mining and machine learning for user modeling, user adaptation and usability, modeling affect and meta-cognition, as well as intelligent information retrieval, information filtering and content personalization.
Publisher: Springer
ISBN: 3540730788
Category : Computers
Languages : en
Pages : 503
Book Description
This book constitutes the refereed proceedings of the 11th International Conference on User Modeling, UM 2007, held in Corfu, Greece in July 2007. Coverage includes evaluating user/student modeling techniques, data mining and machine learning for user modeling, user adaptation and usability, modeling affect and meta-cognition, as well as intelligent information retrieval, information filtering and content personalization.
Chaos-based Cryptography
Author: Ljupco Kocarev
Publisher: Springer Science & Business Media
ISBN: 3642205410
Category : Computers
Languages : en
Pages : 400
Book Description
Chaos-based cryptography, attracting many researchers in the past decade, is a research field across two fields, i.e., chaos (nonlinear dynamic system) and cryptography (computer and data security). It Chaos' properties, such as randomness and ergodicity, have been proved to be suitable for designing the means for data protection. The book gives a thorough description of chaos-based cryptography, which consists of chaos basic theory, chaos properties suitable for cryptography, chaos-based cryptographic techniques, and various secure applications based on chaos. Additionally, it covers both the latest research results and some open issues or hot topics. The book creates a collection of high-quality chapters contributed by leading experts in the related fields. It embraces a wide variety of aspects of the related subject areas and provide a scientifically and scholarly sound treatment of state-of-the-art techniques to students, researchers, academics, personnel of law enforcement and IT practitioners who are interested or involved in the study, research, use, design and development of techniques related to chaos-based cryptography.
Publisher: Springer Science & Business Media
ISBN: 3642205410
Category : Computers
Languages : en
Pages : 400
Book Description
Chaos-based cryptography, attracting many researchers in the past decade, is a research field across two fields, i.e., chaos (nonlinear dynamic system) and cryptography (computer and data security). It Chaos' properties, such as randomness and ergodicity, have been proved to be suitable for designing the means for data protection. The book gives a thorough description of chaos-based cryptography, which consists of chaos basic theory, chaos properties suitable for cryptography, chaos-based cryptographic techniques, and various secure applications based on chaos. Additionally, it covers both the latest research results and some open issues or hot topics. The book creates a collection of high-quality chapters contributed by leading experts in the related fields. It embraces a wide variety of aspects of the related subject areas and provide a scientifically and scholarly sound treatment of state-of-the-art techniques to students, researchers, academics, personnel of law enforcement and IT practitioners who are interested or involved in the study, research, use, design and development of techniques related to chaos-based cryptography.
Computational Optimization and Applications in Engineering and Industry
Author: Xin-She Yang
Publisher: Springer
ISBN: 3642209866
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
Contemporary design in engineering and industry relies heavily on computer simulation and efficient algorithms to reduce the cost and to maximize the performance and sustainability as well as profits and energy efficiency. Solving an optimization problem correctly and efficiently requires not only the right choice of optimization algorithms and simulation methods, but also the proper implementation and insight into the problem of interest. This book consists of ten self-contained, detailed case studies of real-world optimization problems, selected from a wide range of applications and contributed from worldwide experts who are working in these exciting areas. Optimization topics and applications include gas and water supply networks, oil field production optimization, microwave engineering, aerodynamic shape design, environmental emergence modelling, structural engineering, waveform design for radar and communication systems, parameter estimation in laser experiment and measurement, engineering materials and network scheduling. These case studies have been solved using a wide range of optimization techniques, including particle swarm optimization, genetic algorithms, artificial bee colony, harmony search, adaptive error control, derivative-free pattern search, surrogate-based optimization, variable-fidelity modelling, as well as various other methods and approaches. This book is a practical guide to help graduates and researchers to carry out optimization for real-world applications. More advanced readers will also find it a helpful reference and aide memoire.
Publisher: Springer
ISBN: 3642209866
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
Contemporary design in engineering and industry relies heavily on computer simulation and efficient algorithms to reduce the cost and to maximize the performance and sustainability as well as profits and energy efficiency. Solving an optimization problem correctly and efficiently requires not only the right choice of optimization algorithms and simulation methods, but also the proper implementation and insight into the problem of interest. This book consists of ten self-contained, detailed case studies of real-world optimization problems, selected from a wide range of applications and contributed from worldwide experts who are working in these exciting areas. Optimization topics and applications include gas and water supply networks, oil field production optimization, microwave engineering, aerodynamic shape design, environmental emergence modelling, structural engineering, waveform design for radar and communication systems, parameter estimation in laser experiment and measurement, engineering materials and network scheduling. These case studies have been solved using a wide range of optimization techniques, including particle swarm optimization, genetic algorithms, artificial bee colony, harmony search, adaptive error control, derivative-free pattern search, surrogate-based optimization, variable-fidelity modelling, as well as various other methods and approaches. This book is a practical guide to help graduates and researchers to carry out optimization for real-world applications. More advanced readers will also find it a helpful reference and aide memoire.
Meta-Learning in Computational Intelligence
Author: Norbert Jankowski
Publisher: Springer
ISBN: 3642209807
Category : Technology & Engineering
Languages : en
Pages : 362
Book Description
Computational Intelligence (CI) community has developed hundreds of algorithms for intelligent data analysis, but still many hard problems in computer vision, signal processing or text and multimedia understanding, problems that require deep learning techniques, are open. Modern data mining packages contain numerous modules for data acquisition, pre-processing, feature selection and construction, instance selection, classification, association and approximation methods, optimization techniques, pattern discovery, clusterization, visualization and post-processing. A large data mining package allows for billions of ways in which these modules can be combined. No human expert can claim to explore and understand all possibilities in the knowledge discovery process. This is where algorithms that learn how to learnl come to rescue. Operating in the space of all available data transformations and optimization techniques these algorithms use meta-knowledge about learning processes automatically extracted from experience of solving diverse problems. Inferences about transformations useful in different contexts help to construct learning algorithms that can uncover various aspects of knowledge hidden in the data. Meta-learning shifts the focus of the whole CI field from individual learning algorithms to the higher level of learning how to learn. This book defines and reveals new theoretical and practical trends in meta-learning, inspiring the readers to further research in this exciting field.
Publisher: Springer
ISBN: 3642209807
Category : Technology & Engineering
Languages : en
Pages : 362
Book Description
Computational Intelligence (CI) community has developed hundreds of algorithms for intelligent data analysis, but still many hard problems in computer vision, signal processing or text and multimedia understanding, problems that require deep learning techniques, are open. Modern data mining packages contain numerous modules for data acquisition, pre-processing, feature selection and construction, instance selection, classification, association and approximation methods, optimization techniques, pattern discovery, clusterization, visualization and post-processing. A large data mining package allows for billions of ways in which these modules can be combined. No human expert can claim to explore and understand all possibilities in the knowledge discovery process. This is where algorithms that learn how to learnl come to rescue. Operating in the space of all available data transformations and optimization techniques these algorithms use meta-knowledge about learning processes automatically extracted from experience of solving diverse problems. Inferences about transformations useful in different contexts help to construct learning algorithms that can uncover various aspects of knowledge hidden in the data. Meta-learning shifts the focus of the whole CI field from individual learning algorithms to the higher level of learning how to learn. This book defines and reveals new theoretical and practical trends in meta-learning, inspiring the readers to further research in this exciting field.
Innovative Computing Methods and their Applications to Engineering Problems
Author: Nadia Nedjah
Publisher: Springer
ISBN: 3642209580
Category : Technology & Engineering
Languages : en
Pages : 166
Book Description
The design of most modern engineering systems entails the consideration of a good trade-off between the several targets requirements to be satisfied along the system life such as high reliability, low redundancy and low operational costs. These aspects are often in conflict with one another, hence a compromise solution has to be sought. Innovative computing techniques, such as genetic algorithms, swarm intelligence, differential evolution, multi-objective evolutionary optimization, just to name few, are of great help in founding effective and reliable solution for many engineering problems. Each chapter of this book attempts to using an innovative computing technique to elegantly solve a different engineering problem.
Publisher: Springer
ISBN: 3642209580
Category : Technology & Engineering
Languages : en
Pages : 166
Book Description
The design of most modern engineering systems entails the consideration of a good trade-off between the several targets requirements to be satisfied along the system life such as high reliability, low redundancy and low operational costs. These aspects are often in conflict with one another, hence a compromise solution has to be sought. Innovative computing techniques, such as genetic algorithms, swarm intelligence, differential evolution, multi-objective evolutionary optimization, just to name few, are of great help in founding effective and reliable solution for many engineering problems. Each chapter of this book attempts to using an innovative computing technique to elegantly solve a different engineering problem.
Computational Optimization, Methods and Algorithms
Author: Slawomir Koziel
Publisher: Springer Science & Business Media
ISBN: 3642208584
Category : Computers
Languages : en
Pages : 292
Book Description
Computational optimization is an important paradigm with a wide range of applications. In virtually all branches of engineering and industry, we almost always try to optimize something - whether to minimize the cost and energy consumption, or to maximize profits, outputs, performance and efficiency. In many cases, this search for optimality is challenging, either because of the high computational cost of evaluating objectives and constraints, or because of the nonlinearity, multimodality, discontinuity and uncertainty of the problem functions in the real-world systems. Another complication is that most problems are often NP-hard, that is, the solution time for finding the optimum increases exponentially with the problem size. The development of efficient algorithms and specialized techniques that address these difficulties is of primary importance for contemporary engineering, science and industry. This book consists of 12 self-contained chapters, contributed from worldwide experts who are working in these exciting areas. The book strives to review and discuss the latest developments concerning optimization and modelling with a focus on methods and algorithms for computational optimization. It also covers well-chosen, real-world applications in science, engineering and industry. Main topics include derivative-free optimization, multi-objective evolutionary algorithms, surrogate-based methods, maximum simulated likelihood estimation, support vector machines, and metaheuristic algorithms. Application case studies include aerodynamic shape optimization, microwave engineering, black-box optimization, classification, economics, inventory optimization and structural optimization. This graduate level book can serve as an excellent reference for lecturers, researchers and students in computational science, engineering and industry.
Publisher: Springer Science & Business Media
ISBN: 3642208584
Category : Computers
Languages : en
Pages : 292
Book Description
Computational optimization is an important paradigm with a wide range of applications. In virtually all branches of engineering and industry, we almost always try to optimize something - whether to minimize the cost and energy consumption, or to maximize profits, outputs, performance and efficiency. In many cases, this search for optimality is challenging, either because of the high computational cost of evaluating objectives and constraints, or because of the nonlinearity, multimodality, discontinuity and uncertainty of the problem functions in the real-world systems. Another complication is that most problems are often NP-hard, that is, the solution time for finding the optimum increases exponentially with the problem size. The development of efficient algorithms and specialized techniques that address these difficulties is of primary importance for contemporary engineering, science and industry. This book consists of 12 self-contained chapters, contributed from worldwide experts who are working in these exciting areas. The book strives to review and discuss the latest developments concerning optimization and modelling with a focus on methods and algorithms for computational optimization. It also covers well-chosen, real-world applications in science, engineering and industry. Main topics include derivative-free optimization, multi-objective evolutionary algorithms, surrogate-based methods, maximum simulated likelihood estimation, support vector machines, and metaheuristic algorithms. Application case studies include aerodynamic shape optimization, microwave engineering, black-box optimization, classification, economics, inventory optimization and structural optimization. This graduate level book can serve as an excellent reference for lecturers, researchers and students in computational science, engineering and industry.
Bio-Inspired Self-Organizing Robotic Systems
Author: Yan Meng
Publisher: Springer
ISBN: 364220760X
Category : Technology & Engineering
Languages : en
Pages : 273
Book Description
Self-organizing approaches inspired from biological systems, such as social insects, genetic, molecular and cellular systems under morphogenesis, and human mental development, has enjoyed great success in advanced robotic systems that need to work in dynamic and changing environments. Compared with classical control methods for robotic systems, the major advantages of bio-inspired self-organizing robotic systems include robustness, self-repair and self-healing in the presence of system failures and/or malfunctions, high adaptability to environmental changes, and autonomous self-organization and self-reconfiguration without a centralized control. “Bio-inspired Self-organizing Robotic Systems” provides a valuable reference for scientists, practitioners and research students working on developing control algorithms for self-organizing engineered collective systems, such as swarm robotic systems, self-reconfigurable modular robots, smart material based robotic devices, unmanned aerial vehicles, and satellite constellations.
Publisher: Springer
ISBN: 364220760X
Category : Technology & Engineering
Languages : en
Pages : 273
Book Description
Self-organizing approaches inspired from biological systems, such as social insects, genetic, molecular and cellular systems under morphogenesis, and human mental development, has enjoyed great success in advanced robotic systems that need to work in dynamic and changing environments. Compared with classical control methods for robotic systems, the major advantages of bio-inspired self-organizing robotic systems include robustness, self-repair and self-healing in the presence of system failures and/or malfunctions, high adaptability to environmental changes, and autonomous self-organization and self-reconfiguration without a centralized control. “Bio-inspired Self-organizing Robotic Systems” provides a valuable reference for scientists, practitioners and research students working on developing control algorithms for self-organizing engineered collective systems, such as swarm robotic systems, self-reconfigurable modular robots, smart material based robotic devices, unmanned aerial vehicles, and satellite constellations.