Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids

Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids PDF Author: Laura De Lorenzis
Publisher: Springer Nature
ISBN: 3030375188
Category : Science
Languages : en
Pages : 225

Get Book Here

Book Description
The book examines innovative numerical methods for computational solid and fluid mechanics that can be used to model complex problems in engineering. It also presents innovative and promising simulation methods, including the fundamentals of these methods, as well as advanced topics and complex applications. Further, the book explores how numerical simulations can significantly reduce the number of time-consuming and expensive experiments required, and can support engineering decisions by providing data that would be very difficult, if not impossible, to obtain experimentally. It also includes chapters covering topics such as particle methods addressing particle-based materials and numerical methods that are based on discrete element formulations; fictitious domain methods; phase field models; computational fluid dynamics based on modern finite volume schemes; hybridizable discontinuous Galerkin methods; and non-intrusive coupling methods for structural models.

Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids

Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids PDF Author: Laura De Lorenzis
Publisher: Springer Nature
ISBN: 3030375188
Category : Science
Languages : en
Pages : 225

Get Book Here

Book Description
The book examines innovative numerical methods for computational solid and fluid mechanics that can be used to model complex problems in engineering. It also presents innovative and promising simulation methods, including the fundamentals of these methods, as well as advanced topics and complex applications. Further, the book explores how numerical simulations can significantly reduce the number of time-consuming and expensive experiments required, and can support engineering decisions by providing data that would be very difficult, if not impossible, to obtain experimentally. It also includes chapters covering topics such as particle methods addressing particle-based materials and numerical methods that are based on discrete element formulations; fictitious domain methods; phase field models; computational fluid dynamics based on modern finite volume schemes; hybridizable discontinuous Galerkin methods; and non-intrusive coupling methods for structural models.

Numerical Modeling in Materials Science and Engineering

Numerical Modeling in Materials Science and Engineering PDF Author: Michel Rappaz
Publisher: Springer Science & Business Media
ISBN: 3540426760
Category : Technology & Engineering
Languages : en
Pages : 556

Get Book Here

Book Description
Computing application to materials science is one of the fastest-growing research areas. This book introduces the concepts and methodologies related to the modeling of the complex phenomena occurring in materials processing. It is intended for undergraduate and graduate students in materials science and engineering, mechanical engineering and physics, and for engineering professionals or researchers.

Efficient High-Order Discretizations for Computational Fluid Dynamics

Efficient High-Order Discretizations for Computational Fluid Dynamics PDF Author: Martin Kronbichler
Publisher: Springer Nature
ISBN: 3030606104
Category : Technology & Engineering
Languages : en
Pages : 314

Get Book Here

Book Description
The book introduces modern high-order methods for computational fluid dynamics. As compared to low order finite volumes predominant in today's production codes, higher order discretizations significantly reduce dispersion errors, the main source of error in long-time simulations of flow at higher Reynolds numbers. A major goal of this book is to teach the basics of the discontinuous Galerkin (DG) method in terms of its finite volume and finite element ingredients. It also discusses the computational efficiency of high-order methods versus state-of-the-art low order methods in the finite difference context, given that accuracy requirements in engineering are often not overly strict. The book mainly addresses researchers and doctoral students in engineering, applied mathematics, physics and high-performance computing with a strong interest in the interdisciplinary aspects of computational fluid dynamics. It is also well-suited for practicing computational engineers who would like to gain an overview of discontinuous Galerkin methods, modern algorithmic realizations, and high-performance implementations.

Innovative Numerical Modelling in Geomechanics

Innovative Numerical Modelling in Geomechanics PDF Author: Luis Ribeiro e Sousa
Publisher: CRC Press
ISBN: 0415616611
Category : Technology & Engineering
Languages : en
Pages : 476

Get Book Here

Book Description
Since the 1990s five books on ‘Applications of Computational Mechanics in Geotechnical Engineering’ have been published. Innovative Numerical Modelling in Geomechanics is the 6th and final book in this series, and contains papers written by leading experts on computational mechanics. The book treats highly relevant topics in the field of geotechnics, such as environmental geotechnics, open and underground excavations, foundations, embankments and rockfill dams, computational systems and oil geomechanics. Special attention is paid to risk in geotechnical engineering, and to recent developments in applying Bayesian networks and Data Mining techniques. Innovative Numerical Modelling in Geomechanics will be of interest to civil, mining and environmental engineers, as well as to engineering geologists. The book will also be useful for academics and researchers involved in geotechnics.

Advances in Applied Mechanics

Advances in Applied Mechanics PDF Author: Daniel S. Balint
Publisher: Academic Press
ISBN: 0128209909
Category : Science
Languages : en
Pages : 410

Get Book Here

Book Description
Advances in Applied Mechanics, Volume 53 in this ongoing series, highlights new advances in the field, with this new volume presenting interesting chapters on Phase field modelling of fracture, Advanced geometry representations and tools for microstructural and multiscale modelling, The material point method: the past and the future, From Experimental Modeling of Shotcrete to Large Scale Numerical Simulations of Tunneling, and Material point method after 25 years: theory, implementation, applications. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Advances in Applied Mechanics series

Innovative Numerical Approaches for Multi-Field and Multi-Scale Problems

Innovative Numerical Approaches for Multi-Field and Multi-Scale Problems PDF Author: Kerstin Weinberg
Publisher: Springer
ISBN: 3319390228
Category : Science
Languages : en
Pages : 310

Get Book Here

Book Description
This book provides readers with a detailed insight into diverse and exciting recent developments in computational solid mechanics, documenting new perspectives and horizons. The topics addressed cover a wide range of current research, from computational materials modeling, including crystal plasticity, micro-structured materials, and biomaterials, to multi-scale simulations of multi-physics phenomena. Particular emphasis is placed on pioneering discretization methods for the solution of coupled non-linear problems at different length scales. The book, written by leading experts, reflects the remarkable advances that have been made in the field over the past decade and more, largely due to the development of a sound mathematical background and efficient computational strategies. The contents build upon the 2014 IUTAM symposium celebrating the 60th birthday of Professor Michael Ortiz, to whom this book is dedicated. His work has long been recognized as pioneering and is a continuing source of inspiration for many researchers. It is hoped that by providing a "taste" of the field of computational mechanics, the book will promote its popularity among the mechanics and physics communities.

Computational Gas-Solids Flows and Reacting Systems: Theory, Methods and Practice

Computational Gas-Solids Flows and Reacting Systems: Theory, Methods and Practice PDF Author: Pannala, Sreekanth
Publisher: IGI Global
ISBN: 1615206523
Category : Computers
Languages : en
Pages : 499

Get Book Here

Book Description
"This book provides various approaches to computational gas-solids flow and will aid the researchers, graduate students and practicing engineers in this rapidly expanding area"--Provided by publisher.

Boundary Element Methods in Engineering

Boundary Element Methods in Engineering PDF Author: Balkrishna S. Annigeri
Publisher: Springer Science & Business Media
ISBN: 3642842380
Category : Technology & Engineering
Languages : en
Pages : 596

Get Book Here

Book Description
The Boundary Element Method (BEM) has become established as an effective tool for the solutions of problems in engineering science. The salient features of the BEM have been well documented in the open literature and therefore will not be elaborated here. The BEM research has progressed rapidly, especially in the past decade and continues to evolve worldwide. This Symposium was organized to provide an international forum for presentation of current research in BEM for linear and nonlinear problems in solid and fluid mechanics and related areas. To this end, papers on the following topics were included: rotary wing aerodynamics, unsteady aerodynamics, design and optimization, elasticity, elasto dynamics and elastoplasticity, fracture mechanics, acoustics, diffusion and wave motion, thermal analysis, mathematical aspects and boundary/finite element coupled methods. A special session was devoted to parallel/vector supercomputing with emphasis on mas sive parallelism. This Symposium was sponsored by United Technologies Research Center (UTRC) , NASA Langley Research Center, and the International Association of Boundary Ele ment Methods (lAB EM) . We thank the UTRC management for their permission to host this Symposium. In particular, we thank Dr. Arthur S. Kesten and Mr. Robert E. Olson for their encouragement and support. We gratefully acknowledge the support of Dr. E. Carson Yates, Jr. of NASA Langley, Prof. Luigi Morino, Dr. Thomas A.

Cellular Automata and Modeling of Complex Physical Systems

Cellular Automata and Modeling of Complex Physical Systems PDF Author: Paul Manneville
Publisher: Springer Science & Business Media
ISBN: 3642752594
Category : Science
Languages : en
Pages : 326

Get Book Here

Book Description
Cellular automata are fully discrete dynamical systems with dynamical variables defined at the nodes of a lattice and taking values in a finite set. Application of a local transition rule at each lattice site generates the dynamics. The interpretation of systems with a large number of degrees of freedom in terms of lattice gases has received considerable attention recently due to the many applications of this approach, e.g. for simulating fluid flows under nearly realistic conditions, for modeling complex microscopic natural phenomena such as diffusion-reaction or catalysis, and for analysis of pattern-forming systems. The discussion in this book covers aspects of cellular automata theory related to general problems of information theory and statistical physics, lattice gas theory, direct applications, problems arising in the modeling of microscopic physical processes, complex macroscopic behavior (mostly in connection with turbulence), and the design of special-purpose computers.

Multiphase Flow Handbook, Second Edition

Multiphase Flow Handbook, Second Edition PDF Author: Efstathios Michaelides
Publisher: CRC Press
ISBN: 1315354624
Category : Science
Languages : en
Pages : 1559

Get Book Here

Book Description
The Multiphase Flow Handbook, Second Edition is a thoroughly updated and reorganized revision of the late Clayton Crowe’s work, and provides a detailed look at the basic concepts and the wide range of applications in this important area of thermal/fluids engineering. Revised by the new editors, Efstathios E. (Stathis) Michaelides and John D. Schwarzkopf, the new Second Edition begins with two chapters covering fundamental concepts and methods that pertain to all the types and applications of multiphase flow. The remaining chapters cover the applications and engineering systems that are relevant to all the types of multiphase flow and heat transfer. The twenty-one chapters and several sections of the book include the basic science as well as the contemporary engineering and technological applications of multiphase flow in a comprehensive way that is easy to follow and be understood. The editors created a common set of nomenclature that is used throughout the book, allowing readers to easily compare fundamental theory with currently developing concepts and applications. With contributed chapters from sixty-two leading experts around the world, the Multiphase Flow Handbook, Second Edition is an essential reference for all researchers, academics and engineers working with complex thermal and fluid systems.