Modeling By Nonlinear Differential Equations: Dissipative And Conservative Processes

Modeling By Nonlinear Differential Equations: Dissipative And Conservative Processes PDF Author: Paul Phillipson
Publisher: World Scientific
ISBN: 9814468169
Category : Mathematics
Languages : en
Pages : 238

Get Book Here

Book Description
This book aims to provide mathematical analyses of nonlinear differential equations, which have proved pivotal to understanding many phenomena in physics, chemistry and biology. Topics of focus are autocatalysis and dynamics of molecular evolution, relaxation oscillations, deterministic chaos, reaction diffusion driven chemical pattern formation, solitons and neuron dynamics. Included is a discussion of processes from the viewpoints of reversibility, reflected by conservative classical mechanics, and irreversibility introduced by the dissipative role of diffusion. Each chapter presents the subject matter from the point of one or a few key equations, whose properties and consequences are amplified by approximate analytic solutions that are developed to support graphical display of exact computer solutions

Modeling By Nonlinear Differential Equations: Dissipative And Conservative Processes

Modeling By Nonlinear Differential Equations: Dissipative And Conservative Processes PDF Author: Paul Phillipson
Publisher: World Scientific
ISBN: 9814468169
Category : Mathematics
Languages : en
Pages : 238

Get Book Here

Book Description
This book aims to provide mathematical analyses of nonlinear differential equations, which have proved pivotal to understanding many phenomena in physics, chemistry and biology. Topics of focus are autocatalysis and dynamics of molecular evolution, relaxation oscillations, deterministic chaos, reaction diffusion driven chemical pattern formation, solitons and neuron dynamics. Included is a discussion of processes from the viewpoints of reversibility, reflected by conservative classical mechanics, and irreversibility introduced by the dissipative role of diffusion. Each chapter presents the subject matter from the point of one or a few key equations, whose properties and consequences are amplified by approximate analytic solutions that are developed to support graphical display of exact computer solutions

Practical Course In Differential Equations And Mathematical Modelling, A: Classical And New Methods. Nonlinear Mathematical Models. Symmetry And Invariance Principles

Practical Course In Differential Equations And Mathematical Modelling, A: Classical And New Methods. Nonlinear Mathematical Models. Symmetry And Invariance Principles PDF Author: Nail H Ibragimov
Publisher: World Scientific Publishing Company
ISBN: 9813107766
Category : Mathematics
Languages : en
Pages : 365

Get Book Here

Book Description
A Practical Course in Differential Equations and Mathematical Modelling is a unique blend of the traditional methods of ordinary and partial differential equations with Lie group analysis enriched by the author's own theoretical developments. The book — which aims to present new mathematical curricula based on symmetry and invariance principles — is tailored to develop analytic skills and “working knowledge” in both classical and Lie's methods for solving linear and nonlinear equations. This approach helps to make courses in differential equations, mathematical modelling, distributions and fundamental solution, etc. easy to follow and interesting for students. The book is based on the author's extensive teaching experience at Novosibirsk and Moscow universities in Russia, Collège de France, Georgia Tech and Stanford University in the United States, universities in South Africa, Cyprus, Turkey, and Blekinge Institute of Technology (BTH) in Sweden. The new curriculum prepares students for solving modern nonlinear problems and will essentially be more appealing to students compared to the traditional way of teaching mathematics.

Nonlinear Partial Differential Equations with Applications

Nonlinear Partial Differential Equations with Applications PDF Author: Tomás Roubicek
Publisher: Springer Science & Business Media
ISBN: 3764373970
Category : Mathematics
Languages : en
Pages : 415

Get Book Here

Book Description
This book primarily concerns quasilinear and semilinear elliptic and parabolic partial differential equations, inequalities, and systems. The exposition quickly leads general theory to analysis of concrete equations, which have specific applications in such areas as electrically (semi-) conductive media, modeling of biological systems, and mechanical engineering. Methods of Galerkin or of Rothe are exposed in a large generality.

Nonlinear Differential Equation Models

Nonlinear Differential Equation Models PDF Author: Ansgar Jüngel
Publisher: Springer Science & Business Media
ISBN: 9783211209950
Category : Mathematics
Languages : en
Pages : 216

Get Book Here

Book Description
The papers in this book originate from lectures which were held at the "Vienna Workshop on Nonlinear Models and Analysis" – May 20–24, 2002. They represent a cross-section of the research field Applied Nonlinear Analysis with emphasis on free boundaries, fully nonlinear partial differential equations, variational methods, quasilinear partial differential equations and nonlinear kinetic models.

Numerical Methods for Nonlinear Engineering Models

Numerical Methods for Nonlinear Engineering Models PDF Author: John R. Hauser
Publisher: Springer Science & Business Media
ISBN: 1402099207
Category : Technology & Engineering
Languages : en
Pages : 1013

Get Book Here

Book Description
There are many books on the use of numerical methods for solving engineering problems and for modeling of engineering artifacts. In addition there are many styles of such presentations ranging from books with a major emphasis on theory to books with an emphasis on applications. The purpose of this book is hopefully to present a somewhat different approach to the use of numerical methods for - gineering applications. Engineering models are in general nonlinear models where the response of some appropriate engineering variable depends in a nonlinear manner on the - plication of some independent parameter. It is certainly true that for many types of engineering models it is sufficient to approximate the real physical world by some linear model. However, when engineering environments are pushed to - treme conditions, nonlinear effects are always encountered. It is also such - treme conditions that are of major importance in determining the reliability or failure limits of engineering systems. Hence it is essential than engineers have a toolbox of modeling techniques that can be used to model nonlinear engineering systems. Such a set of basic numerical methods is the topic of this book. For each subject area treated, nonlinear models are incorporated into the discussion from the very beginning and linear models are simply treated as special cases of more general nonlinear models. This is a basic and fundamental difference in this book from most books on numerical methods.

Spatial Patterns

Spatial Patterns PDF Author: L.A. Peletier
Publisher: Springer Science & Business Media
ISBN: 1461201357
Category : Mathematics
Languages : en
Pages : 347

Get Book Here

Book Description
The study of spatial patterns in extended systems, and their evolution with time, poses challenging questions for physicists and mathematicians alike. Waves on water, pulses in optical fibers, periodic structures in alloys, folds in rock formations, and cloud patterns in the sky: patterns are omnipresent in the world around us. Their variety and complexity make them a rich area of study. In the study of these phenomena an important role is played by well-chosen model equations, which are often simpler than the full equations describing the physical or biological system, but still capture its essential features. Through a thorough analysis of these model equations one hopes to glean a better under standing of the underlying mechanisms that are responsible for the formation and evolution of complex patterns. Classical model equations have typically been second-order partial differential equations. As an example we mention the widely studied Fisher-Kolmogorov or Allen-Cahn equation, originally proposed in 1937 as a model for the interaction of dispersal and fitness in biological populations. As another example we mention the Burgers equation, proposed in 1939 to study the interaction of diffusion and nonlinear convection in an attempt to understand the phenomenon of turbulence. Both of these are nonlinear second-order diffusion equations.

Nonstandard Finite Difference Models of Differential Equations

Nonstandard Finite Difference Models of Differential Equations PDF Author: Ronald E. Mickens
Publisher: World Scientific
ISBN: 9810214588
Category : Mathematics
Languages : en
Pages : 264

Get Book Here

Book Description
This book provides a clear summary of the work of the author on the construction of nonstandard finite difference schemes for the numerical integration of differential equations. The major thrust of the book is to show that discrete models of differential equations exist such that the elementary types of numerical instabilities do not occur. A consequence of this result is that in general bigger step-sizes can often be used in actual calculations and/or finite difference schemes can be constructed that are conditionally stable in many instances whereas in using standard techniques no such schemes exist. The theoretical basis of this work is centered on the concepts of ?exact? and ?best? finite difference schemes. In addition, a set of rules is given for the discrete modeling of derivatives and nonlinear expressions that occur in differential equations. These rules often lead to a unique nonstandard finite difference model for a given differential equation.

Differential Equations

Differential Equations PDF Author: Courtney Brown
Publisher: SAGE
ISBN: 1412941083
Category : Social Science
Languages : en
Pages : 121

Get Book Here

Book Description
'Differential Equations: A Modeling Approach' explains the mathematics and theory of differential equations. Graphical methods of analysis are emphasized over formal proofs, making the text even more accessible for newcomers to the subject matter.

Nonlinear Differential Equations and Dynamical Systems

Nonlinear Differential Equations and Dynamical Systems PDF Author: Feliz Manuel Minhós
Publisher: MDPI
ISBN: 3036507108
Category : Mathematics
Languages : en
Pages : 158

Get Book Here

Book Description
This Special Edition contains new results on Differential and Integral Equations and Systems, covering higher-order Initial and Boundary Value Problems, fractional differential and integral equations and applications, non-local optimal control, inverse, and higher-order nonlinear boundary value problems, distributional solutions in the form of a finite series of the Dirac delta function and its derivatives, asymptotic properties’ oscillatory theory for neutral nonlinear differential equations, the existence of extremal solutions via monotone iterative techniques, predator–prey interaction via fractional-order models, among others. Our main goal is not only to show new trends in this field but also to showcase and provide new methods and techniques that can lead to future research.

Numerical Methods for Nonlinear Partial Differential Equations

Numerical Methods for Nonlinear Partial Differential Equations PDF Author: Sören Bartels
Publisher: Springer
ISBN: 3319137972
Category : Mathematics
Languages : en
Pages : 394

Get Book Here

Book Description
The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.