Author: Yong-Gang Li
Publisher: Walter de Gruyter
ISBN: 3110259036
Category : Science
Languages : en
Pages : 273
Book Description
This work presents current approaches in geophysical research of earthquakes. A global authorship from top institutions presents case studies to model, measure, and monitor earthquakes. Among others a full-3D waveform tomography method is introduced, as well as propagator methods for modeling and imaging. In particular the earthquake prediction method makes this book a must-read for researchers in the field.
Imaging, Modeling and Assimilation in Seismology
Author: Yong-Gang Li
Publisher: Walter de Gruyter
ISBN: 3110259036
Category : Science
Languages : en
Pages : 273
Book Description
This work presents current approaches in geophysical research of earthquakes. A global authorship from top institutions presents case studies to model, measure, and monitor earthquakes. Among others a full-3D waveform tomography method is introduced, as well as propagator methods for modeling and imaging. In particular the earthquake prediction method makes this book a must-read for researchers in the field.
Publisher: Walter de Gruyter
ISBN: 3110259036
Category : Science
Languages : en
Pages : 273
Book Description
This work presents current approaches in geophysical research of earthquakes. A global authorship from top institutions presents case studies to model, measure, and monitor earthquakes. Among others a full-3D waveform tomography method is introduced, as well as propagator methods for modeling and imaging. In particular the earthquake prediction method makes this book a must-read for researchers in the field.
Seismic Motion, Lithospheric Structures, Earthquake and Volcanic Sources
Author: Yehuda Ben-Zion
Publisher: Birkhäuser
ISBN: 3034880103
Category : Science
Languages : en
Pages : 369
Book Description
Geophysicists use seismic signals to image structures in the Earth's interior, to understand the mechanics of earthquake and volcanic sources, and to estimate their associated hazards. Keiiti Aki developed pioneering quantitative methods for extracting useful information from various portions of observed seismograms and applied these methods to many problems in the above fields. This volume honors Aki's contributions with review papers and results from recent applications by his former students and scientific associates pertaining to topics spawned by his work. Discussed subjects include analytical and numerical techniques for calculating dynamic rupture and radiated seismic waves, stochastic models used in engineering seismology, earthquake and volcanic source processes, seismic tomography, properties of lithospheric structures, analysis of scattered waves, and more. The volume will be useful to students and professional geophysicists alike.
Publisher: Birkhäuser
ISBN: 3034880103
Category : Science
Languages : en
Pages : 369
Book Description
Geophysicists use seismic signals to image structures in the Earth's interior, to understand the mechanics of earthquake and volcanic sources, and to estimate their associated hazards. Keiiti Aki developed pioneering quantitative methods for extracting useful information from various portions of observed seismograms and applied these methods to many problems in the above fields. This volume honors Aki's contributions with review papers and results from recent applications by his former students and scientific associates pertaining to topics spawned by his work. Discussed subjects include analytical and numerical techniques for calculating dynamic rupture and radiated seismic waves, stochastic models used in engineering seismology, earthquake and volcanic source processes, seismic tomography, properties of lithospheric structures, analysis of scattered waves, and more. The volume will be useful to students and professional geophysicists alike.
Seismic Waves in Laterally Inhomogeneous Media
Author: Ivan Pšenčík
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 352
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 352
Book Description
Seismic Waves in Laterally Inhomogeneous Media
Author: Ivan Psencik
Publisher: Birkhäuser
ISBN: 3034892136
Category : Science
Languages : en
Pages : 340
Book Description
The special issue contains contributions presented at the international workshop Seismic waves in laterally inhomo- geneous media IV, which was held at the Castle of Trest, Czech Republic, May 22-27, 1995. The workshop, which was attended by about 100 seismologists from more than 10 countries, was devoted mainly to the current state of theoretical and computational means of study of seismic wave propagation in complex structures. The special issue can be of interest for theoretical, global and explorational seismologists. The first part contains papers dealing with the study and the use of various methods of solving forward and inverse problems in complicated structures. Among other methods, discrete-wave number method, the finite-difference method, the edge-wave supperposition method and the ray method are studied and used. Most papers contained in the second part are related to the ray method. The most important topics are two-point ray tracing, grid calculations of travel times and amplitudes and seismic wave propagation in anisotropic media.
Publisher: Birkhäuser
ISBN: 3034892136
Category : Science
Languages : en
Pages : 340
Book Description
The special issue contains contributions presented at the international workshop Seismic waves in laterally inhomo- geneous media IV, which was held at the Castle of Trest, Czech Republic, May 22-27, 1995. The workshop, which was attended by about 100 seismologists from more than 10 countries, was devoted mainly to the current state of theoretical and computational means of study of seismic wave propagation in complex structures. The special issue can be of interest for theoretical, global and explorational seismologists. The first part contains papers dealing with the study and the use of various methods of solving forward and inverse problems in complicated structures. Among other methods, discrete-wave number method, the finite-difference method, the edge-wave supperposition method and the ray method are studied and used. Most papers contained in the second part are related to the ray method. The most important topics are two-point ray tracing, grid calculations of travel times and amplitudes and seismic wave propagation in anisotropic media.
LASL Shock Hugoniot Data
Author: Stanley P. Marsh
Publisher: Univ of California Press
ISBN: 9780520040076
Category : Equations of state
Languages : en
Pages : 684
Book Description
Publisher: Univ of California Press
ISBN: 9780520040076
Category : Equations of state
Languages : en
Pages : 684
Book Description
Seismic Wave Propagation and Scattering in the Heterogenous Earth
Author: Haruo Sato
Publisher: Springer Science & Business Media
ISBN: 3540896236
Category : Science
Languages : en
Pages : 308
Book Description
Seismic waves – generated both by natural earthquakes and by man-made sources – have produced an enormous amount of information about the Earth's interior. In classical seismology, the Earth is modeled as a sequence of uniform horizontal layers (or sperical shells) having different elastic properties and one determines these properties from travel times and dispersion of seismic waves. The Earth, however, is not made of horizontally uniform layers, and classic seismic methods can take large-scale inhomogeneities into account. Smaller-scale irregularities, on the other hand, require other methods. Observations of continuous wave trains that follow classic direct S waves, known as coda waves, have shown that there are heterogeneities of random size scattered randomly throughout the layers of the classic seismic model. This book focuses on recent developments in the area of seismic wave propagation and scattering through the randomly heterogeneous structure of the Earth, with emphasis on the lithosphere. The presentation combines information from many sources to present a coherent introduction to the theory of scattering in acoustic and elastic materials and includes analyses of observations using the theoretical methods developed.
Publisher: Springer Science & Business Media
ISBN: 3540896236
Category : Science
Languages : en
Pages : 308
Book Description
Seismic waves – generated both by natural earthquakes and by man-made sources – have produced an enormous amount of information about the Earth's interior. In classical seismology, the Earth is modeled as a sequence of uniform horizontal layers (or sperical shells) having different elastic properties and one determines these properties from travel times and dispersion of seismic waves. The Earth, however, is not made of horizontally uniform layers, and classic seismic methods can take large-scale inhomogeneities into account. Smaller-scale irregularities, on the other hand, require other methods. Observations of continuous wave trains that follow classic direct S waves, known as coda waves, have shown that there are heterogeneities of random size scattered randomly throughout the layers of the classic seismic model. This book focuses on recent developments in the area of seismic wave propagation and scattering through the randomly heterogeneous structure of the Earth, with emphasis on the lithosphere. The presentation combines information from many sources to present a coherent introduction to the theory of scattering in acoustic and elastic materials and includes analyses of observations using the theoretical methods developed.
Mathematical Methods in Elasticity Imaging
Author: Habib Ammari
Publisher: Princeton University Press
ISBN: 0691165319
Category : Mathematics
Languages : en
Pages : 240
Book Description
This book is the first to comprehensively explore elasticity imaging and examines recent, important developments in asymptotic imaging, modeling, and analysis of deterministic and stochastic elastic wave propagation phenomena. It derives the best possible functional images for small inclusions and cracks within the context of stability and resolution, and introduces a topological derivative–based imaging framework for detecting elastic inclusions in the time-harmonic regime. For imaging extended elastic inclusions, accurate optimal control methodologies are designed and the effects of uncertainties of the geometric or physical parameters on stability and resolution properties are evaluated. In particular, the book shows how localized damage to a mechanical structure affects its dynamic characteristics, and how measured eigenparameters are linked to elastic inclusion or crack location, orientation, and size. Demonstrating a novel method for identifying, locating, and estimating inclusions and cracks in elastic structures, the book opens possibilities for a mathematical and numerical framework for elasticity imaging of nanoparticles and cellular structures.
Publisher: Princeton University Press
ISBN: 0691165319
Category : Mathematics
Languages : en
Pages : 240
Book Description
This book is the first to comprehensively explore elasticity imaging and examines recent, important developments in asymptotic imaging, modeling, and analysis of deterministic and stochastic elastic wave propagation phenomena. It derives the best possible functional images for small inclusions and cracks within the context of stability and resolution, and introduces a topological derivative–based imaging framework for detecting elastic inclusions in the time-harmonic regime. For imaging extended elastic inclusions, accurate optimal control methodologies are designed and the effects of uncertainties of the geometric or physical parameters on stability and resolution properties are evaluated. In particular, the book shows how localized damage to a mechanical structure affects its dynamic characteristics, and how measured eigenparameters are linked to elastic inclusion or crack location, orientation, and size. Demonstrating a novel method for identifying, locating, and estimating inclusions and cracks in elastic structures, the book opens possibilities for a mathematical and numerical framework for elasticity imaging of nanoparticles and cellular structures.
The Finite-Difference Modelling of Earthquake Motions
Author: Peter Moczo
Publisher: Cambridge University Press
ISBN: 1139867695
Category : Science
Languages : en
Pages : 387
Book Description
Among all the numerical methods in seismology, the finite-difference (FD) technique provides the best balance of accuracy and computational efficiency. This book offers a comprehensive introduction to FD and its applications to earthquake motion. Using a systematic tutorial approach, the book requires only undergraduate degree-level mathematics and provides a user-friendly explanation of the relevant theory. It explains FD schemes for solving wave equations and elastodynamic equations of motion in heterogeneous media, and provides an introduction to the rheology of viscoelastic and elastoplastic media. It also presents an advanced FD time-domain method for efficient numerical simulations of earthquake ground motion in realistic complex models of local surface sedimentary structures. Accompanied by a suite of online resources to help put the theory into practice, this is a vital resource for professionals and academic researchers using numerical seismological techniques, and graduate students in earthquake seismology, computational and numerical modelling, and applied mathematics.
Publisher: Cambridge University Press
ISBN: 1139867695
Category : Science
Languages : en
Pages : 387
Book Description
Among all the numerical methods in seismology, the finite-difference (FD) technique provides the best balance of accuracy and computational efficiency. This book offers a comprehensive introduction to FD and its applications to earthquake motion. Using a systematic tutorial approach, the book requires only undergraduate degree-level mathematics and provides a user-friendly explanation of the relevant theory. It explains FD schemes for solving wave equations and elastodynamic equations of motion in heterogeneous media, and provides an introduction to the rheology of viscoelastic and elastoplastic media. It also presents an advanced FD time-domain method for efficient numerical simulations of earthquake ground motion in realistic complex models of local surface sedimentary structures. Accompanied by a suite of online resources to help put the theory into practice, this is a vital resource for professionals and academic researchers using numerical seismological techniques, and graduate students in earthquake seismology, computational and numerical modelling, and applied mathematics.
Advances in Geophysics
Author: Ru-Shan Wu
Publisher: Elsevier
ISBN: 0080466354
Category : Science
Languages : en
Pages : 627
Book Description
Significant progress in our understanding of the Earth's structure and functioning is dependent on new and original observations. However, these observations cannot be interpreted in a quantitative way without tools to model them, and developing adequate modelling methods is also a prerequisite for progress. Seismological raw data in the 21st century are mostly three-component broadband recordings, and require advanced numerical tools to be modelled, especially if lateral variations in the model are accounted for in addition to the radial stratification of the Earth. Considerable progress has been made concerning modelling of elastic waves in laterally heterogeneous structures in the last decades, taking advantage of the development of computer power. The number of articles related to new developments of diverse methods is enormous and it can be very difficult for newcomers to get an overview of the different methods available, and to be able to find which method is most appropriate for his or her applications. This book aims at giving introductions and basic reviews of the modelling methods for elastic waves in laterally heterogeneous structures which are most commonly used in contemporary seismology, or may have great potential for the future.
Publisher: Elsevier
ISBN: 0080466354
Category : Science
Languages : en
Pages : 627
Book Description
Significant progress in our understanding of the Earth's structure and functioning is dependent on new and original observations. However, these observations cannot be interpreted in a quantitative way without tools to model them, and developing adequate modelling methods is also a prerequisite for progress. Seismological raw data in the 21st century are mostly three-component broadband recordings, and require advanced numerical tools to be modelled, especially if lateral variations in the model are accounted for in addition to the radial stratification of the Earth. Considerable progress has been made concerning modelling of elastic waves in laterally heterogeneous structures in the last decades, taking advantage of the development of computer power. The number of articles related to new developments of diverse methods is enormous and it can be very difficult for newcomers to get an overview of the different methods available, and to be able to find which method is most appropriate for his or her applications. This book aims at giving introductions and basic reviews of the modelling methods for elastic waves in laterally heterogeneous structures which are most commonly used in contemporary seismology, or may have great potential for the future.
Theoretical and Computational Acoustics 2001
Author: Er-Chang Shang
Publisher: World Scientific
ISBN: 9789812777362
Category : Technology & Engineering
Languages : en
Pages : 702
Book Description
This book contains 67 papers presented at ICTCA2001. It includes three keynote addresses surveying the frontier developments in computational and theoretical acoustics. The papers cover aero-, seismo- and ocean acoustics, as well as ultrasonics. Computational methods, numerical simulation, theoretical analysis and experimental results are emphasized by different papers.The proceedings have been selected for coverage in: Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)
Publisher: World Scientific
ISBN: 9789812777362
Category : Technology & Engineering
Languages : en
Pages : 702
Book Description
This book contains 67 papers presented at ICTCA2001. It includes three keynote addresses surveying the frontier developments in computational and theoretical acoustics. The papers cover aero-, seismo- and ocean acoustics, as well as ultrasonics. Computational methods, numerical simulation, theoretical analysis and experimental results are emphasized by different papers.The proceedings have been selected for coverage in: Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)