Modeling, Analysis, and Open-loop Control of an Exhaust Heat Recovery System for Automotive Internal Combustion Engines

Modeling, Analysis, and Open-loop Control of an Exhaust Heat Recovery System for Automotive Internal Combustion Engines PDF Author: Ross P. Owen
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Abstract: A zero-dimensional fluid and thermodynamic model of an engine, cooling system, and exhaust system was developed in order to simulate the operation of an advanced thermal management system. The model was calibrated with experimental data where available. The thermal management system modeled in this work employed waste heat recovery to reduce engine, coolant, and lubricating fluid warm-up times and fuel consumption following a cold-start. The model was used to develop a control strategy for two valves in the exhaust system which control the flow of exhaust through an exhaust-to-coolant heat exchanger. The objective of the controller was to minimize coolant warm-up time without violating any of the system constraints. A model-based open-loop controller was developed that was able to reduce warm-up time by nearly 35% on the FTP city drive cycle while respecting the limitations of the system.

Exhaust Heat Recovery on Automotive Combustion Engines

Exhaust Heat Recovery on Automotive Combustion Engines PDF Author: Andrea Gil Arbues
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Also in modern combustion engines, the maximal energetic efficiency is lower than 45%, which means that 55% of the supplied energy is lost and released to the environment. Automobile manufacturers and R&D partner suppliers are taking a special concern in investigating heat energy from exhaust gases, with the aim of recovering part of the heat by means of a Rankine Process and using it for energy cogeneration in the automobile. In the context of this Master Thesis, a new calculation software of the different thermodynamic states of the waste heat recovery system has to be programmed and used together with the rest of the available calculation tools. Another objective of this Master Thesis is the set up of valid simulation models for the different components of the heat recovery system based on measured testing data. This technical conditions and on the other hand the cycle requirements with the final objective of finding optimized states for each component. Finally, in order to reflect the behaviour of the system as a whole, the integration of the different simulated components of the waste heat recovery model would come in very useful. A complete simulation of the system would enable the estimation of optimization issues of the different parameters and operating points of the cycle.

Nonlinear Model Predictive Control of Combustion Engines

Nonlinear Model Predictive Control of Combustion Engines PDF Author: Thivaharan Albin Rajasingham
Publisher: Springer Nature
ISBN: 303068010X
Category : Technology & Engineering
Languages : en
Pages : 330

Get Book Here

Book Description
This book provides an overview of the nonlinear model predictive control (NMPC) concept for application to innovative combustion engines. Readers can use this book to become more expert in advanced combustion engine control and to develop and implement their own NMPC algorithms to solve challenging control tasks in the field. The significance of the advantages and relevancy for practice is demonstrated by real-world engine and vehicle application examples. The author provides an overview of fundamental engine control systems, and addresses emerging control problems, showing how they can be solved with NMPC. The implementation of NMPC involves various development steps, including: • reduced-order modeling of the process; • analysis of system dynamics; • formulation of the optimization problem; and • real-time feasible numerical solution of the optimization problem. Readers will see the entire process of these steps, from the fundamentals to several innovative applications. The application examples highlight the actual difficulties and advantages when implementing NMPC for engine control applications. Nonlinear Model Predictive Control of Combustion Engines targets engineers and researchers in academia and industry working in the field of engine control. The book is laid out in a structured and easy-to-read manner, supported by code examples in MATLAB®/Simulink®, thus expanding its readership to students and academics who would like to understand the fundamental concepts of NMPC. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.

Energy Research Abstracts

Energy Research Abstracts PDF Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 872

Get Book Here

Book Description


Automotive Exhaust Emissions and Energy Recovery

Automotive Exhaust Emissions and Energy Recovery PDF Author: Apostolos Pesiridis
Publisher: Nova Science Pub Incorporated
ISBN: 9781633214934
Category : Science
Languages : en
Pages : 269

Get Book Here

Book Description
Concerns for fuel economy and reduced emissions have turned the attention of automotive internal combustion engine manufacturers to the exhaust system and towards technological system development to account for the significant levels of potential energy that can be recovered. The present volume on Automotive Exhaust Emissions and Energy Recovery for both gasoline and diesel engines is therefore both timely and appropriate. Whereas diesel engines have been predominantly turbocharged, only a relatively small percentage of gasoline engines are similarly equipped, which has led to significant efforts by engine manufacturers in recent years to downsize and down-speed these engines. On the other hand, the relative focus in diesel engine development in terms of emissions and exhaust energy recovery has shifted toward devices other than the turbocharger for enhanced energy recovery and emissions control technologies in order to allow the diesel engines of the future to keep up with the dual-demand for very low emissions and increasing levels of fuel economy. The book focuses on the exhaust system and the technologies and methods used to reduce emissions and increase fuel economy by capitalising on the exhaust gas energy availability (either in the form of gas kinetic energy or as waste heat extracted from the exhaust gas). It is projected that in the short to medium term, advances in exhaust emissions and energy recovery technologies will lead the way in internal combustion engine development and pave the way towards increasing levels of engine hybridisation until fully electric vehicle technology can claim a level of maturity and corresponding market shares to turn the bulk of this focus away from the internal combustion engine. This book is aimed at engine research professionals in the industry and academia, but also towards students of powertrain engineering. The collection of articles in this book reviews the fundamentals of relevance, recent exhaust system technologies, details recent or on-going projects and uncovers future research directions and potentials.

Exhaust System Energy Management of Internal Combustion Engines

Exhaust System Energy Management of Internal Combustion Engines PDF Author: M. Anusha Wijewardane
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Today, the investigation of fuel economy improvements in internal combustion engines (ICEs) has become the most significant research interest among the automobile manufacturers and researchers. The scarcity of natural resources, progressively increasing oil prices, carbon dioxide taxation and stringent emission regulations all make fuel economy research relevant and compelling. The enhancement of engine performance solely using incylinder techniques is proving increasingly difficult and as a consequence the concept of exhaust energy recovery has emerged as an area of considerable interest. Three main energy recovery systems have been identified that are at various stages of investigation. Vapour power bottoming cycles and turbo-compounding devices have already been applied in commercially available marine engines and automobiles. Although the fuel economy benefits are substantial, system design implications have limited their adaptation due to the additional components and the complexity of the resulting system. In this context, thermo-electric (TE) generation systems, though still in their infancy for vehicle applications have been identified as attractive, promising and solid state candidates of low complexity. The performance of these devices is limited to the relative infancy of materials investigations and module architectures. There is great potential to be explored. The initial modelling work reported in this study shows that with current materials and construction technology, thermo-electric devices could be produced to displace the alternator of the light duty vehicles, providing the fuel economy benefits of 3.9%-4.7% for passenger cars and 7.4% for passenger buses. More efficient thermo-electric materials could increase the fuel economy significantly resulting in a substantially improved business case. The dynamic behaviour of the thermo-electric generator (TEG) applied in both, main exhaust gas stream and exhaust gas recirculation (EGR) path of light duty and heavy duty engines were studied through a series of experimental and modelling programs. The analyses of the thermo-electric generation systems have highlighted the need for advanced heat exchanger design as well as the improved materials to enhance the performance of these systems. These research requirements led to the need for a systems evaluation technique typified by hardware-in-the-loop (HIL) testing method to evaluate heat exchange and materials options. HIL methods have been used during this study to estimate both the output power and the exhaust back pressure created by the device. The work has established the feasibility of a new approach to heat exchange devices for thermo-electric systems. Based on design projections and the predicted performance of new materials, the potential to match the performance of established heat recovery methods has been demonstrated.

Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance

Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance PDF Author: Richard Folkson
Publisher: Elsevier
ISBN: 0857097423
Category : Technology & Engineering
Languages : en
Pages : 803

Get Book Here

Book Description
Most vehicles run on fossil fuels, and this presents a major emissions problem as demand for fuel continues to increase. Alternative Fuels and Advanced Vehicle Technologies gives an overview of key developments in advanced fuels and vehicle technologies to improve the energy efficiency and environmental impact of the automotive sector. Part I considers the role of alternative fuels such as electricity, alcohol, and hydrogen fuel cells, as well as advanced additives and oils, in environmentally sustainable transport. Part II explores methods of revising engine and vehicle design to improve environmental performance and fuel economy. It contains chapters on improvements in design, aerodynamics, combustion, and transmission. Finally, Part III outlines developments in electric and hybrid vehicle technologies, and provides an overview of the benefits and limitations of these vehicles in terms of their environmental impact, safety, cost, and design practicalities. Alternative Fuels and Advanced Vehicle Technologies is a standard reference for professionals, engineers, and researchers in the automotive sector, as well as vehicle manufacturers, fuel system developers, and academics with an interest in this field. - Provides a broad-ranging review of recent research into advanced fuels and vehicle technologies that will be instrumental in improving the energy efficiency and environmental impact of the automotive sector - Reviews the development of alternative fuels, more efficient engines, and powertrain technologies, as well as hybrid and electric vehicle technologies

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 704

Get Book Here

Book Description


Emission Control Modeling

Emission Control Modeling PDF Author:
Publisher:
ISBN: 9780768007527
Category : Technology & Engineering
Languages : en
Pages : 103

Get Book Here

Book Description
Collection of papers from the 2001 SAE World Congress, held March 5-8 in Detroit, Michigan. Papers cover a range of computer modeling applications to emissions systems design. Topics covered include heat management, fluid flow modeling (1D as well as 3D), durability analysis, muffler and catalyst performance, and integration of emission systems to engine performance and control. Paper topics are: microkinetics modeling of catalytic converters; on a model-based control of a three-way catalytic converter; an integrated powertrain (IPT) model - stage 2, systems integration, supervisory control and simulation of emissions control technology; 1D unsteady flows with chemical reactions in the exhaust duct-system of SI engines - predictions and experiments; a modular numerical simulation tool predicting catalytic converter light-off by improved modeling of thermal management and conversion characteristics; the solution for steady state temperature distribution in monolithic catalytic converters; optimum gas design and durability analysis of catalytic converter assembly; numerical analysis of the exhaust gas flow and heat transfer in a close-coupled catalytic converter system during warm-up; and three-dimensional numerical study on the pulsating flow inside an automotive muffler with complicated flow path.

Closed-loop Control of Internal Combustion Engine Exhaust Emissions

Closed-loop Control of Internal Combustion Engine Exhaust Emissions PDF Author: J. David Powell
Publisher:
ISBN:
Category : Automobiles
Languages : en
Pages : 80

Get Book Here

Book Description