Author: Mike Prest
Publisher: Cambridge University Press
ISBN: 0521348331
Category : Mathematics
Languages : en
Pages : 402
Book Description
In recent years the interplay between model theory and other branches of mathematics has led to many deep and intriguing results. In this, the first book on the topic, the theme is the interplay between model theory and the theory of modules. The book is intended to be a self-contained introduction to the subject and introduces the requisite model theory and module theory as it is needed. Dr Prest develops the basic ideas concerning what can be said about modules using the information which may be expressed in a first-order language. Later chapters discuss stability-theoretic aspects of modules, and structure and classification theorems over various types of rings and for certain classes of modules. Both algebraists and logicians will enjoy this account of an area in which algebra and model theory interact in a significant way. The book includes numerous examples and exercises and consequently will make an ideal introduction for graduate students coming to this subject for the first time.
Model Theory and Modules
Author: Mike Prest
Publisher: Cambridge University Press
ISBN: 0521348331
Category : Mathematics
Languages : en
Pages : 402
Book Description
In recent years the interplay between model theory and other branches of mathematics has led to many deep and intriguing results. In this, the first book on the topic, the theme is the interplay between model theory and the theory of modules. The book is intended to be a self-contained introduction to the subject and introduces the requisite model theory and module theory as it is needed. Dr Prest develops the basic ideas concerning what can be said about modules using the information which may be expressed in a first-order language. Later chapters discuss stability-theoretic aspects of modules, and structure and classification theorems over various types of rings and for certain classes of modules. Both algebraists and logicians will enjoy this account of an area in which algebra and model theory interact in a significant way. The book includes numerous examples and exercises and consequently will make an ideal introduction for graduate students coming to this subject for the first time.
Publisher: Cambridge University Press
ISBN: 0521348331
Category : Mathematics
Languages : en
Pages : 402
Book Description
In recent years the interplay between model theory and other branches of mathematics has led to many deep and intriguing results. In this, the first book on the topic, the theme is the interplay between model theory and the theory of modules. The book is intended to be a self-contained introduction to the subject and introduces the requisite model theory and module theory as it is needed. Dr Prest develops the basic ideas concerning what can be said about modules using the information which may be expressed in a first-order language. Later chapters discuss stability-theoretic aspects of modules, and structure and classification theorems over various types of rings and for certain classes of modules. Both algebraists and logicians will enjoy this account of an area in which algebra and model theory interact in a significant way. The book includes numerous examples and exercises and consequently will make an ideal introduction for graduate students coming to this subject for the first time.
Model Theoretic Algebra With Particular Emphasis on Fields, Rings, Modules
Author: Christian.U Jensen
Publisher: Routledge
ISBN: 1351431129
Category : Mathematics
Languages : en
Pages : 458
Book Description
This volume highlights the links between model theory and algebra. The work contains a definitive account of algebraically compact modules, a topic of central importance for both module and model theory. Using concrete examples, particular emphasis is given to model theoretic concepts, such as axiomizability. Pure mathematicians, especially algebraists, ring theorists, logicians, model theorists and representation theorists, should find this an absorbing and stimulating book.
Publisher: Routledge
ISBN: 1351431129
Category : Mathematics
Languages : en
Pages : 458
Book Description
This volume highlights the links between model theory and algebra. The work contains a definitive account of algebraically compact modules, a topic of central importance for both module and model theory. Using concrete examples, particular emphasis is given to model theoretic concepts, such as axiomizability. Pure mathematicians, especially algebraists, ring theorists, logicians, model theorists and representation theorists, should find this an absorbing and stimulating book.
Model Theory of Modules, Algebras and Categories
Author: Alberto Facchini
Publisher: American Mathematical Soc.
ISBN: 1470443678
Category : Mathematics
Languages : en
Pages : 250
Book Description
This volume contains the proceedings of the international conference Model Theory of Modules, Algebras and Categories, held from July 28–August 2, 2017, at the Ettore Majorana Foundation and Centre for Scientific Culture in Erice, Italy. Papers contained in this volume cover recent developments in model theory, module theory and category theory, and their intersection.
Publisher: American Mathematical Soc.
ISBN: 1470443678
Category : Mathematics
Languages : en
Pages : 250
Book Description
This volume contains the proceedings of the international conference Model Theory of Modules, Algebras and Categories, held from July 28–August 2, 2017, at the Ettore Majorana Foundation and Centre for Scientific Culture in Erice, Italy. Papers contained in this volume cover recent developments in model theory, module theory and category theory, and their intersection.
Introduction to Model Theory
Author: Philipp Rothmaler
Publisher: CRC Press
ISBN: 0429668503
Category : Mathematics
Languages : en
Pages : 324
Book Description
Model theory investigates mathematical structures by means of formal languages. So-called first-order languages have proved particularly useful in this respect. This text introduces the model theory of first-order logic, avoiding syntactical issues not too relevant to model theory. In this spirit, the compactness theorem is proved via the algebraically useful ultrsproduct technique (rather than via the completeness theorem of first-order logic). This leads fairly quickly to algebraic applications, like Malcev's local theorems of group theory and, after a little more preparation, to Hilbert's Nullstellensatz of field theory. Steinitz dimension theory for field extensions is obtained as a special case of a much more general model-theoretic treatment of strongly minimal theories. There is a final chapter on the models of the first-order theory of the integers as an abelian group. Both these topics appear here for the first time in a textbook at the introductory level, and are used to give hints to further reading and to recent developments in the field, such as stability (or classification) theory.
Publisher: CRC Press
ISBN: 0429668503
Category : Mathematics
Languages : en
Pages : 324
Book Description
Model theory investigates mathematical structures by means of formal languages. So-called first-order languages have proved particularly useful in this respect. This text introduces the model theory of first-order logic, avoiding syntactical issues not too relevant to model theory. In this spirit, the compactness theorem is proved via the algebraically useful ultrsproduct technique (rather than via the completeness theorem of first-order logic). This leads fairly quickly to algebraic applications, like Malcev's local theorems of group theory and, after a little more preparation, to Hilbert's Nullstellensatz of field theory. Steinitz dimension theory for field extensions is obtained as a special case of a much more general model-theoretic treatment of strongly minimal theories. There is a final chapter on the models of the first-order theory of the integers as an abelian group. Both these topics appear here for the first time in a textbook at the introductory level, and are used to give hints to further reading and to recent developments in the field, such as stability (or classification) theory.
Model Theory
Author: Wilfrid Hodges
Publisher: Cambridge University Press
ISBN: 9780521304429
Category : Mathematics
Languages : en
Pages : 810
Book Description
Model theory is concerned with the notions of definition, interpretation and structure in a very general setting, and is applied to a wide range of other areas such as set theory, geometry, algebra and computer science. This book provides an integrated introduction to model theory for graduate students.
Publisher: Cambridge University Press
ISBN: 9780521304429
Category : Mathematics
Languages : en
Pages : 810
Book Description
Model theory is concerned with the notions of definition, interpretation and structure in a very general setting, and is applied to a wide range of other areas such as set theory, geometry, algebra and computer science. This book provides an integrated introduction to model theory for graduate students.
Categories and Modules with K-Theory in View
Author: A. J. Berrick
Publisher: Cambridge University Press
ISBN: 9780521632768
Category : Mathematics
Languages : en
Pages : 384
Book Description
This book, first published in 2000, develops aspects of category theory fundamental to the study of algebraic K-theory. Ring and module theory illustrates category theory which provides insight into more advanced topics in module theory. Starting with categories in general, the text then examines categories of K-theory. This leads to the study of tensor products and the Morita theory. The categorical approach to localizations and completions of modules is formulated in terms of direct and inverse limits, prompting a discussion of localization of categories in general. Finally, local-global techniques which supply information about modules from their localizations and completions and underlie some interesting applications of K-theory to number theory and geometry are considered. Many useful exercises, concrete illustrations of abstract concepts placed in their historical settings and an extensive list of references are included. This book will help all who wish to work in K-theory to master its prerequisites.
Publisher: Cambridge University Press
ISBN: 9780521632768
Category : Mathematics
Languages : en
Pages : 384
Book Description
This book, first published in 2000, develops aspects of category theory fundamental to the study of algebraic K-theory. Ring and module theory illustrates category theory which provides insight into more advanced topics in module theory. Starting with categories in general, the text then examines categories of K-theory. This leads to the study of tensor products and the Morita theory. The categorical approach to localizations and completions of modules is formulated in terms of direct and inverse limits, prompting a discussion of localization of categories in general. Finally, local-global techniques which supply information about modules from their localizations and completions and underlie some interesting applications of K-theory to number theory and geometry are considered. Many useful exercises, concrete illustrations of abstract concepts placed in their historical settings and an extensive list of references are included. This book will help all who wish to work in K-theory to master its prerequisites.
Model Theory of Algebra and Arithmetic
Author: L. Pacholski
Publisher: Springer
ISBN: 354038393X
Category : Mathematics
Languages : en
Pages : 420
Book Description
Publisher: Springer
ISBN: 354038393X
Category : Mathematics
Languages : en
Pages : 420
Book Description
Module Theory
Author: Alberto Facchini
Publisher: Springer Science & Business Media
ISBN: 3034803036
Category : Mathematics
Languages : en
Pages : 296
Book Description
This book presents topics in module theory and ring theory: some, such as Goldie dimension and semiperfect rings are now considered classical and others more specialized, such as dual Goldie dimension, semilocal endomorphism rings, serial rings and modules.
Publisher: Springer Science & Business Media
ISBN: 3034803036
Category : Mathematics
Languages : en
Pages : 296
Book Description
This book presents topics in module theory and ring theory: some, such as Goldie dimension and semiperfect rings are now considered classical and others more specialized, such as dual Goldie dimension, semilocal endomorphism rings, serial rings and modules.
Model Theory and Applications
Author: O.V. Belegradek
Publisher: American Mathematical Soc.
ISBN: 9780821896037
Category : Mathematics
Languages : en
Pages : 362
Book Description
This volume is a collection of papers on model theory and its applications. The longest paper, "Model Theory of Unitriangular Groups" by O. V. Belegradek, forms a subtle general theory behind Mal'tsev's famous correspondence between rings and groups. This is the first published paper on the topic. Given the present model-theoretic interest in algebraic groups, Belegradek's work is of particular interest to logicians and algebraists. The rest of the collection consists of papers on various questions of model theory, mainly on stability theory. Contributors are leading Russian researchers in the field.
Publisher: American Mathematical Soc.
ISBN: 9780821896037
Category : Mathematics
Languages : en
Pages : 362
Book Description
This volume is a collection of papers on model theory and its applications. The longest paper, "Model Theory of Unitriangular Groups" by O. V. Belegradek, forms a subtle general theory behind Mal'tsev's famous correspondence between rings and groups. This is the first published paper on the topic. Given the present model-theoretic interest in algebraic groups, Belegradek's work is of particular interest to logicians and algebraists. The rest of the collection consists of papers on various questions of model theory, mainly on stability theory. Contributors are leading Russian researchers in the field.
Logic and Its Applications
Author: Md. Aquil Khan
Publisher: Springer
ISBN: 3662587718
Category : Mathematics
Languages : en
Pages : 210
Book Description
This book collects the refereed proceedings of the 8th Indian Conference on Logic and Its Applications, ICLA 2019, held in Delhi, India, in March 2019. The volume contains 13 full revised papers along with 6 invited talks presented at the conference. The aim of this conference series is to bring together researchers from a wide variety of fields in which formal logic plays a significant role. Areas of interest include mathematical and philosophical logic, computer science logic, foundations and philosophy of mathematics and the sciences, use of formal logic in areas of theoretical computer science and artificial intelligence, logic and linguistics, and the relationship between logic and other branches of knowledge. Of special interest are studies in systems of logic in the Indian tradition, and historical research on logic.
Publisher: Springer
ISBN: 3662587718
Category : Mathematics
Languages : en
Pages : 210
Book Description
This book collects the refereed proceedings of the 8th Indian Conference on Logic and Its Applications, ICLA 2019, held in Delhi, India, in March 2019. The volume contains 13 full revised papers along with 6 invited talks presented at the conference. The aim of this conference series is to bring together researchers from a wide variety of fields in which formal logic plays a significant role. Areas of interest include mathematical and philosophical logic, computer science logic, foundations and philosophy of mathematics and the sciences, use of formal logic in areas of theoretical computer science and artificial intelligence, logic and linguistics, and the relationship between logic and other branches of knowledge. Of special interest are studies in systems of logic in the Indian tradition, and historical research on logic.