Model Theory in Algebra, Analysis and Arithmetic

Model Theory in Algebra, Analysis and Arithmetic PDF Author: Lou van den Dries
Publisher: Springer
ISBN: 3642549365
Category : Mathematics
Languages : en
Pages : 201

Get Book Here

Book Description
Presenting recent developments and applications, the book focuses on four main topics in current model theory: 1) the model theory of valued fields; 2) undecidability in arithmetic; 3) NIP theories; and 4) the model theory of real and complex exponentiation. Young researchers in model theory will particularly benefit from the book, as will more senior researchers in other branches of mathematics.

Model Theory in Algebra, Analysis and Arithmetic

Model Theory in Algebra, Analysis and Arithmetic PDF Author: Lou van den Dries
Publisher: Springer
ISBN: 3642549365
Category : Mathematics
Languages : en
Pages : 201

Get Book Here

Book Description
Presenting recent developments and applications, the book focuses on four main topics in current model theory: 1) the model theory of valued fields; 2) undecidability in arithmetic; 3) NIP theories; and 4) the model theory of real and complex exponentiation. Young researchers in model theory will particularly benefit from the book, as will more senior researchers in other branches of mathematics.

Mathematical Logic and Model Theory

Mathematical Logic and Model Theory PDF Author: Alexander Prestel
Publisher: Springer Science & Business Media
ISBN: 1447121767
Category : Mathematics
Languages : en
Pages : 198

Get Book Here

Book Description
Mathematical Logic and Model Theory: A Brief Introduction offers a streamlined yet easy-to-read introduction to mathematical logic and basic model theory. It presents, in a self-contained manner, the essential aspects of model theory needed to understand model theoretic algebra. As a profound application of model theory in algebra, the last part of this book develops a complete proof of Ax and Kochen's work on Artin's conjecture about Diophantine properties of p-adic number fields. The character of model theoretic constructions and results differ quite significantly from that commonly found in algebra, by the treatment of formulae as mathematical objects. It is therefore indispensable to first become familiar with the problems and methods of mathematical logic. Therefore, the text is divided into three parts: an introduction into mathematical logic (Chapter 1), model theory (Chapters 2 and 3), and the model theoretic treatment of several algebraic theories (Chapter 4). This book will be of interest to both advanced undergraduate and graduate students studying model theory and its applications to algebra. It may also be used for self-study.

Model Theory : An Introduction

Model Theory : An Introduction PDF Author: David Marker
Publisher: Springer Science & Business Media
ISBN: 0387227342
Category : Mathematics
Languages : en
Pages : 342

Get Book Here

Book Description
Assumes only a familiarity with algebra at the beginning graduate level; Stresses applications to algebra; Illustrates several of the ways Model Theory can be a useful tool in analyzing classical mathematical structures

Nonstandard Models of Arithmetic and Set Theory

Nonstandard Models of Arithmetic and Set Theory PDF Author: Ali Enayat
Publisher: American Mathematical Soc.
ISBN: 0821835351
Category : Mathematics
Languages : en
Pages : 184

Get Book Here

Book Description
This is the proceedings of the AMS special session on nonstandard models of arithmetic and set theory held at the Joint Mathematics Meetings in Baltimore (MD). The volume opens with an essay from Haim Gaifman that probes the concept of non-standardness in mathematics and provides a fascinating mix of historical and philosophical insights into the nature of nonstandard mathematical structures. In particular, Gaifman compares and contrasts the discovery of nonstandard models with other key mathematical innovations, such as the introduction of various number systems, the modern concept of function, and non-Euclidean geometries. Other articles in the book present results related to nonstandard models in arithmetic and set theory, including a survey of known results on the Turing upper bounds of arithmetic sets and functions. The volume is suitable for graduate students and research mathematicians interested in logic, especially model theory.

A Course in Model Theory

A Course in Model Theory PDF Author: Bruno Poizat
Publisher: Springer Science & Business Media
ISBN: 1441986227
Category : Mathematics
Languages : en
Pages : 472

Get Book Here

Book Description
Translated from the French, this book is an introduction to first-order model theory. Starting from scratch, it quickly reaches the essentials, namely, the back-and-forth method and compactness, which are illustrated with examples taken from algebra. It also introduces logic via the study of the models of arithmetic, and it gives complete but accessible exposition of stability theory.

Higher Arithmetic

Higher Arithmetic PDF Author: Harold M. Edwards
Publisher: American Mathematical Soc.
ISBN: 9780821844397
Category : Mathematics
Languages : en
Pages : 228

Get Book Here

Book Description
Among the topics featured in this textbook are: congruences; the fundamental theorem of arithmetic; exponentiation and orders; primality testing; the RSA cipher system; polynomials; modules of hypernumbers; signatures of equivalence classes; and the theory of binary quadratic forms. The book contains exercises with answers.

A Course in Model Theory

A Course in Model Theory PDF Author: Katrin Tent
Publisher: Cambridge University Press
ISBN: 052176324X
Category : Mathematics
Languages : en
Pages : 259

Get Book Here

Book Description
Concise introduction to current topics in model theory, including simple and stable theories.

A Shorter Model Theory

A Shorter Model Theory PDF Author: Wilfrid Hodges
Publisher: Cambridge University Press
ISBN: 9780521587136
Category : Mathematics
Languages : en
Pages : 322

Get Book Here

Book Description
This is an up-to-date textbook of model theory taking the reader from first definitions to Morley's theorem and the elementary parts of stability theory. Besides standard results such as the compactness and omitting types theorems, it also describes various links with algebra, including the Skolem-Tarski method of quantifier elimination, model completeness, automorphism groups and omega-categoricity, ultraproducts, O-minimality and structures of finite Morley rank. The material on back-and-forth equivalences, interpretations and zero-one laws can serve as an introduction to applications of model theory in computer science. Each chapter finishes with a brief commentary on the literature and suggestions for further reading. This book will benefit graduate students with an interest in model theory.

Subsystems of Second Order Arithmetic

Subsystems of Second Order Arithmetic PDF Author: Stephen George Simpson
Publisher: Cambridge University Press
ISBN: 052188439X
Category : Mathematics
Languages : en
Pages : 461

Get Book Here

Book Description
This volume examines appropriate axioms for mathematics to prove particular theorems in core areas.

Model Theory for Beginners. 15 Lectures

Model Theory for Beginners. 15 Lectures PDF Author: Roman Kossak
Publisher:
ISBN: 9781848903616
Category :
Languages : en
Pages : 152

Get Book Here

Book Description
This book presents an introduction to model theory in 15 lectures. It concentrates on several key concepts: first-order definability, classification of complete types, elementary extensions, categoricity, automorphisms, and saturation; all illustrated with examples that require neither advanced alegbra nor set theory. A full proof of the compactness theorem for countable languages and its applications are given, followed by a discussion of the Ehrefeucht-Mostowski technique for constructing models admitting automorphisms. Additional topics include recursive saturation, nonstandard models of arithmetic, Abraham Robinson's model-theoretic proof of Tarski's theorem on undefinability of truth, and the proof of the Infinite Ramsey Theorem using an elementary extension of the standard model of arithmetic.