Model Theory in Algebra, Analysis and Arithmetic

Model Theory in Algebra, Analysis and Arithmetic PDF Author: Lou van den Dries
Publisher: Springer
ISBN: 3642549365
Category : Mathematics
Languages : en
Pages : 201

Get Book Here

Book Description
Presenting recent developments and applications, the book focuses on four main topics in current model theory: 1) the model theory of valued fields; 2) undecidability in arithmetic; 3) NIP theories; and 4) the model theory of real and complex exponentiation. Young researchers in model theory will particularly benefit from the book, as will more senior researchers in other branches of mathematics.

Model Theory in Algebra, Analysis and Arithmetic

Model Theory in Algebra, Analysis and Arithmetic PDF Author: Lou van den Dries
Publisher: Springer
ISBN: 3642549365
Category : Mathematics
Languages : en
Pages : 201

Get Book Here

Book Description
Presenting recent developments and applications, the book focuses on four main topics in current model theory: 1) the model theory of valued fields; 2) undecidability in arithmetic; 3) NIP theories; and 4) the model theory of real and complex exponentiation. Young researchers in model theory will particularly benefit from the book, as will more senior researchers in other branches of mathematics.

Model Theory : An Introduction

Model Theory : An Introduction PDF Author: David Marker
Publisher: Springer Science & Business Media
ISBN: 0387227342
Category : Mathematics
Languages : en
Pages : 342

Get Book Here

Book Description
Assumes only a familiarity with algebra at the beginning graduate level; Stresses applications to algebra; Illustrates several of the ways Model Theory can be a useful tool in analyzing classical mathematical structures

A Course in Model Theory

A Course in Model Theory PDF Author: Katrin Tent
Publisher: Cambridge University Press
ISBN: 052176324X
Category : Mathematics
Languages : en
Pages : 259

Get Book Here

Book Description
Concise introduction to current topics in model theory, including simple and stable theories.

Model Theory and Algebraic Geometry

Model Theory and Algebraic Geometry PDF Author: Elisabeth Bouscaren
Publisher: Springer
ISBN: 3540685219
Category : Mathematics
Languages : en
Pages : 223

Get Book Here

Book Description
This introduction to the recent exciting developments in the applications of model theory to algebraic geometry, illustrated by E. Hrushovski's model-theoretic proof of the geometric Mordell-Lang Conjecture starts from very basic background and works up to the detailed exposition of Hrushovski's proof, explaining the necessary tools and results from stability theory on the way. The first chapter is an informal introduction to model theory itself, making the book accessible (with a little effort) to readers with no previous knowledge of model theory. The authors have collaborated closely to achieve a coherent and self- contained presentation, whereby the completeness of exposition of the chapters varies according to the existence of other good references, but comments and examples are always provided to give the reader some intuitive understanding of the subject.

Advances in Algebra and Model Theory

Advances in Algebra and Model Theory PDF Author: M Droste
Publisher: CRC Press
ISBN: 9789056991012
Category : Mathematics
Languages : en
Pages : 516

Get Book Here

Book Description
Contains 25 surveys in algebra and model theory, all written by leading experts in the field. The surveys are based around talks given at conferences held in Essen, 1994, and Dresden, 1995. Each contribution is written in such a way as to highlight the ideas that were discussed at the conferences, and also to stimulate open research problems in a form accessible to the whole mathematical community. The topics include field and ring theory as well as groups, ordered algebraic structure and their relationship to model theory. Several papers deal with infinite permutation groups, abelian groups, modules and their relatives and representations. Model theoretic aspects include quantifier elimination in skew fields, Hilbert's 17th problem, (aleph-0)-categorical structures and Boolean algebras. Moreover symmetry questions and automorphism groups of orders are covered. This work contains 25 surveys in algebra and model theory, each is written in such a way as to highlight the ideas that were discussed at Conferences, and also to stimulate open research problems in a form accessible to the whole mathematical community.

Model Theoretic Algebra With Particular Emphasis on Fields, Rings, Modules

Model Theoretic Algebra With Particular Emphasis on Fields, Rings, Modules PDF Author: Christian.U Jensen
Publisher: Routledge
ISBN: 1351431129
Category : Mathematics
Languages : en
Pages : 458

Get Book Here

Book Description
This volume highlights the links between model theory and algebra. The work contains a definitive account of algebraically compact modules, a topic of central importance for both module and model theory. Using concrete examples, particular emphasis is given to model theoretic concepts, such as axiomizability. Pure mathematicians, especially algebraists, ring theorists, logicians, model theorists and representation theorists, should find this an absorbing and stimulating book.

Introduction to Model Theory

Introduction to Model Theory PDF Author: Philipp Rothmaler
Publisher: CRC Press
ISBN: 0429668503
Category : Mathematics
Languages : en
Pages : 324

Get Book Here

Book Description
Model theory investigates mathematical structures by means of formal languages. So-called first-order languages have proved particularly useful in this respect. This text introduces the model theory of first-order logic, avoiding syntactical issues not too relevant to model theory. In this spirit, the compactness theorem is proved via the algebraically useful ultrsproduct technique (rather than via the completeness theorem of first-order logic). This leads fairly quickly to algebraic applications, like Malcev's local theorems of group theory and, after a little more preparation, to Hilbert's Nullstellensatz of field theory. Steinitz dimension theory for field extensions is obtained as a special case of a much more general model-theoretic treatment of strongly minimal theories. There is a final chapter on the models of the first-order theory of the integers as an abelian group. Both these topics appear here for the first time in a textbook at the introductory level, and are used to give hints to further reading and to recent developments in the field, such as stability (or classification) theory.

Mathematical Logic and Model Theory

Mathematical Logic and Model Theory PDF Author: Alexander Prestel
Publisher: Springer Science & Business Media
ISBN: 1447121767
Category : Mathematics
Languages : en
Pages : 198

Get Book Here

Book Description
Mathematical Logic and Model Theory: A Brief Introduction offers a streamlined yet easy-to-read introduction to mathematical logic and basic model theory. It presents, in a self-contained manner, the essential aspects of model theory needed to understand model theoretic algebra. As a profound application of model theory in algebra, the last part of this book develops a complete proof of Ax and Kochen's work on Artin's conjecture about Diophantine properties of p-adic number fields. The character of model theoretic constructions and results differ quite significantly from that commonly found in algebra, by the treatment of formulae as mathematical objects. It is therefore indispensable to first become familiar with the problems and methods of mathematical logic. Therefore, the text is divided into three parts: an introduction into mathematical logic (Chapter 1), model theory (Chapters 2 and 3), and the model theoretic treatment of several algebraic theories (Chapter 4). This book will be of interest to both advanced undergraduate and graduate students studying model theory and its applications to algebra. It may also be used for self-study.

A Shorter Model Theory

A Shorter Model Theory PDF Author: Wilfrid Hodges
Publisher: Cambridge University Press
ISBN: 9780521587136
Category : Mathematics
Languages : en
Pages : 322

Get Book Here

Book Description
This is an up-to-date textbook of model theory taking the reader from first definitions to Morley's theorem and the elementary parts of stability theory. Besides standard results such as the compactness and omitting types theorems, it also describes various links with algebra, including the Skolem-Tarski method of quantifier elimination, model completeness, automorphism groups and omega-categoricity, ultraproducts, O-minimality and structures of finite Morley rank. The material on back-and-forth equivalences, interpretations and zero-one laws can serve as an introduction to applications of model theory in computer science. Each chapter finishes with a brief commentary on the literature and suggestions for further reading. This book will benefit graduate students with an interest in model theory.

Asymptotic Differential Algebra and Model Theory of Transseries

Asymptotic Differential Algebra and Model Theory of Transseries PDF Author: Matthias Aschenbrenner
Publisher: Princeton University Press
ISBN: 0691175438
Category : Mathematics
Languages : en
Pages : 873

Get Book Here

Book Description
Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems. This self-contained book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity. Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton-Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences.