Model Based Fuzzy Control

Model Based Fuzzy Control PDF Author: Rainer Palm
Publisher: Springer Science & Business Media
ISBN: 3662034018
Category : Computers
Languages : en
Pages : 195

Get Book Here

Book Description
Model Based Fuzzy Control uses a given conventional or fuzzy open loop model of the plant under control to derive the set of fuzzy rules for the fuzzy controller. Of central interest are the stability, performance, and robustness of the resulting closed loop system. The major objective of model based fuzzy control is to use the full range of linear and nonlinear design and analysis methods to design such fuzzy controllers with better stability, performance, and robustness properties than non-fuzzy controllers designed using the same techniques. This objective has already been achieved for fuzzy sliding mode controllers and fuzzy gain schedulers - the main topics of this book. The primary aim of the book is to serve as a guide for the practitioner and to provide introductory material for courses in control theory.

Analysis and Synthesis of Fuzzy Control Systems

Analysis and Synthesis of Fuzzy Control Systems PDF Author: Gang Feng
Publisher: CRC Press
ISBN: 1420092650
Category : Technology & Engineering
Languages : en
Pages : 302

Get Book Here

Book Description
Fuzzy logic control (FLC) has proven to be a popular control methodology for many complex systems in industry, and is often used with great success as an alternative to conventional control techniques. However, because it is fundamentally model free, conventional FLC suffers from a lack of tools for systematic stability analysis and controller design. To address this problem, many model-based fuzzy control approaches have been developed, with the fuzzy dynamic model or the Takagi and Sugeno (T–S) fuzzy model-based approaches receiving the greatest attention. Analysis and Synthesis of Fuzzy Control Systems: A Model-Based Approach offers a unique reference devoted to the systematic analysis and synthesis of model-based fuzzy control systems. After giving a brief review of the varieties of FLC, including the T–S fuzzy model-based control, it fully explains the fundamental concepts of fuzzy sets, fuzzy logic, and fuzzy systems. This enables the book to be self-contained and provides a basis for later chapters, which cover: T–S fuzzy modeling and identification via nonlinear models or data Stability analysis of T–S fuzzy systems Stabilization controller synthesis as well as robust H∞ and observer and output feedback controller synthesis Robust controller synthesis of uncertain T–S fuzzy systems Time-delay T–S fuzzy systems Fuzzy model predictive control Robust fuzzy filtering Adaptive control of T–S fuzzy systems A reference for scientists and engineers in systems and control, the book also serves the needs of graduate students exploring fuzzy logic control. It readily demonstrates that conventional control technology and fuzzy logic control can be elegantly combined and further developed so that disadvantages of conventional FLC can be avoided and the horizon of conventional control technology greatly extended. Many chapters feature application simulation examples and practical numerical examples based on MATLAB®.

Fuzzy Control Systems Design and Analysis

Fuzzy Control Systems Design and Analysis PDF Author: Kazuo Tanaka
Publisher: John Wiley & Sons
ISBN: 0471465224
Category : Science
Languages : en
Pages : 321

Get Book Here

Book Description
A comprehensive treatment of model-based fuzzy control systems This volume offers full coverage of the systematic framework for the stability and design of nonlinear fuzzy control systems. Building on the Takagi-Sugeno fuzzy model, authors Tanaka and Wang address a number of important issues in fuzzy control systems, including stability analysis, systematic design procedures, incorporation of performance specifications, numerical implementations, and practical applications. Issues that have not been fully treated in existing texts, such as stability analysis, systematic design, and performance analysis, are crucial to the validity and applicability of fuzzy control methodology. Fuzzy Control Systems Design and Analysis addresses these issues in the framework of parallel distributed compensation, a controller structure devised in accordance with the fuzzy model. This balanced treatment features an overview of fuzzy control, modeling, and stability analysis, as well as a section on the use of linear matrix inequalities (LMI) as an approach to fuzzy design and control. It also covers advanced topics in model-based fuzzy control systems, including modeling and control of chaotic systems. Later sections offer practical examples in the form of detailed theoretical and experimental studies of fuzzy control in robotic systems and a discussion of future directions in the field. Fuzzy Control Systems Design and Analysis offers an advanced treatment of fuzzy control that makes a useful reference for researchers and a reliable text for advanced graduate students in the field.

Fuzzy Modeling and Fuzzy Control

Fuzzy Modeling and Fuzzy Control PDF Author: Huaguang Zhang
Publisher: Springer Science & Business Media
ISBN: 0817644911
Category : Technology & Engineering
Languages : en
Pages : 423

Get Book Here

Book Description
Fuzzy logic methodology has proven effective in dealing with complex nonlinear systems containing uncertainties that are otherwise difficult to model. Technology based on this methodology is applicable to many real-world problems, especially in the area of consumer products. This book presents the first comprehensive, unified treatment of fuzzy modeling and fuzzy control, providing tools for the control of complex nonlinear systems. Coverage includes model complexity, model precision, and computing time. This is an excellent reference for electrical, computer, chemical, industrial, civil, manufacturing, mechanical and aeronautical engineers, and also useful for graduate courses in electrical engineering, computer engineering, and computer science.

Advances in Fuzzy Control

Advances in Fuzzy Control PDF Author: Dimiter Driankov
Publisher: Physica
ISBN: 3790818860
Category : Computers
Languages : en
Pages : 421

Get Book Here

Book Description
Model-based fuzzy control uses a given conventional or a fuzzy open loop of the plant under control in order to derive the set of fuzzy if-then rules constituting the corresponding fuzzy controller. Furthermore, of central interest are the consequent stability, performance, and robustness analysis of the resulting closed loop system involving a conventional model and a fuzzy controller, or a fuzzy model and a fuzzy controller. The major objective of the model-based fuzzy control is to use the full available range of existing linear and nonlinear design of such fuzzy controllers which have better stability, performance, and robustness properties than the corresponding non-fuzzy controllers designed by the use of these same techniques.

Fuzzy Modeling for Control

Fuzzy Modeling for Control PDF Author: Robert Babuška
Publisher: Springer Science & Business Media
ISBN: 9401148686
Category : Mathematics
Languages : en
Pages : 269

Get Book Here

Book Description
Rule-based fuzzy modeling has been recognised as a powerful technique for the modeling of partly-known nonlinear systems. Fuzzy models can effectively integrate information from different sources, such as physical laws, empirical models, measurements and heuristics. Application areas of fuzzy models include prediction, decision support, system analysis, control design, etc. Fuzzy Modeling for Control addresses fuzzy modeling from the systems and control engineering points of view. It focuses on the selection of appropriate model structures, on the acquisition of dynamic fuzzy models from process measurements (fuzzy identification), and on the design of nonlinear controllers based on fuzzy models. To automatically generate fuzzy models from measurements, a comprehensive methodology is developed which employs fuzzy clustering techniques to partition the available data into subsets characterized by locally linear behaviour. The relationships between the presented identification method and linear regression are exploited, allowing for the combination of fuzzy logic techniques with standard system identification tools. Attention is paid to the trade-off between the accuracy and transparency of the obtained fuzzy models. Control design based on a fuzzy model of a nonlinear dynamic process is addressed, using the concepts of model-based predictive control and internal model control with an inverted fuzzy model. To this end, methods to exactly invert specific types of fuzzy models are presented. In the context of predictive control, branch-and-bound optimization is applied. The main features of the presented techniques are illustrated by means of simple examples. In addition, three real-world applications are described. Finally, software tools for building fuzzy models from measurements are available from the author.

Fuzzy Control and Modeling

Fuzzy Control and Modeling PDF Author: Hao Ying
Publisher: Wiley-IEEE Press
ISBN:
Category : Computers
Languages : en
Pages : 350

Get Book Here

Book Description
The emerging, powerful fuzzy control paradigm has led to the worldwide success of countless commercial products and real-world applications. Fuzzy control is exceptionally practical and cost-effective due to its unique ability to accomplish tasks without knowing the mathematical model of the system, even if it is nonlinear, time varying and complex. Nevertheless, compared with the conventional control technology, most fuzzy control applications are developed in an ad hoc manner with little analytical understanding and without rigorous system analysis and design. Fuzzy Control and Modeling is the only book that establishes the analytical foundations for fuzzy control and modeling in relation to the conventional linear and nonlinear theories of control and systems. The coverage is up-to-date, comprehensive, in-depth and rigorous. Numeric examples and applications illustrate the utility of the theoretical development. Important topics discussed include: Structures of fuzzy controllers/models with respect to conventional fuzzy controllers/models Analysis of fuzzy control and modeling in relation to their classical counterparts Stability analysis of fuzzy systems and design of fuzzy control systems Sufficient and necessary conditions on fuzzy systems as universal approximators Real-time fuzzy control systems for treatment of life-critical problems in biomedicine Fuzzy Control and Modeling is a self-contained, invaluable resource for professionals and students in diverse technical fields who aspire to analytically study fuzzy control and modeling.

Fuzzy Logic Control

Fuzzy Logic Control PDF Author: H. B. Verbruggen
Publisher: World Scientific
ISBN: 9789810238254
Category : Technology & Engineering
Languages : en
Pages : 344

Get Book Here

Book Description
Fuzzy logic control has become an important methodology in control engineering. This volume deals with applications of fuzzy logic control in various domains. The contributions are divided into three parts. The first part consists of two state-of-the-art tutorials on fuzzy control and fuzzy modeling. Surveys of advanced methodologies are included in the second part. These surveys address fuzzy decision making and control, fault detection, isolation and diagnosis, complexity reduction in fuzzy systems and neuro-fuzzy methods. The third part contains application-oriented contributions from various fields, such as process industry, cement and ceramics, vehicle control and traffic management, electromechanical and production systems, avionics, biotechnology and medical applications. The book is intended for researchers both from the academic world and from industry.

Fuzzy Control and Identification

Fuzzy Control and Identification PDF Author: John H. Lilly
Publisher: John Wiley & Sons
ISBN: 1118097815
Category : Technology & Engineering
Languages : en
Pages : 199

Get Book Here

Book Description
This book gives an introduction to basic fuzzy logic and Mamdani and Takagi-Sugeno fuzzy systems. The text shows how these can be used to control complex nonlinear engineering systems, while also also suggesting several approaches to modeling of complex engineering systems with unknown models. Finally, fuzzy modeling and control methods are combined in the book, to create adaptive fuzzy controllers, ending with an example of an obstacle-avoidance controller for an autonomous vehicle using modus ponendo tollens logic.

Fuzzy Decision Making in Modeling and Control

Fuzzy Decision Making in Modeling and Control PDF Author: Joao M. C. Sousa
Publisher: World Scientific
ISBN: 9812777911
Category : Computers
Languages : en
Pages : 356

Get Book Here

Book Description
Decision making and control are two fields with distinct methods for solving problems, and yet they are closely related. This book bridges the gap between decision making and control in the field of fuzzy decisions and fuzzy control, and discusses various ways in which fuzzy decision making methods can be applied to systems modeling and control.Fuzzy decision making is a powerful paradigm for dealing with human expert knowledge when one is designing fuzzy model-based controllers. The combination of fuzzy decision making and fuzzy control in this book can lead to novel control schemes that improve the existing controllers in various ways. The following applications of fuzzy decision making methods for designing control systems are considered: OCo Fuzzy decision making for enhancing fuzzy modeling. The values of important parameters in fuzzy modeling algorithms are selected by using fuzzy decision making.OCo Fuzzy decision making for designing signal-based fuzzy controllers. The controller mappings and the defuzzification steps can be obtained by decision making methods.OCo Fuzzy design and performance specifications in model-based control. Fuzzy constraints and fuzzy goals are used.OCo Design of model-based controllers combined with fuzzy decision modules. Human operator experience is incorporated for the performance specification in model-based control.The advantages of bringing together fuzzy control and fuzzy decision making are shown with multiple examples from real and simulated control systems."