Mining of Data with Complex Structures

Mining of Data with Complex Structures PDF Author: Fedja Hadzic
Publisher: Springer Science & Business Media
ISBN: 3642175562
Category : Computers
Languages : en
Pages : 340

Get Book Here

Book Description
Mining of Data with Complex Structures: - Clarifies the type and nature of data with complex structure including sequences, trees and graphs - Provides a detailed background of the state-of-the-art of sequence mining, tree mining and graph mining. - Defines the essential aspects of the tree mining problem: subtree types, support definitions, constraints. - Outlines the implementation issues one needs to consider when developing tree mining algorithms (enumeration strategies, data structures, etc.) - Details the Tree Model Guided (TMG) approach for tree mining and provides the mathematical model for the worst case estimate of complexity of mining ordered induced and embedded subtrees. - Explains the mechanism of the TMG framework for mining ordered/unordered induced/embedded and distance-constrained embedded subtrees. - Provides a detailed comparison of the different tree mining approaches highlighting the characteristics and benefits of each approach. - Overviews the implications and potential applications of tree mining in general knowledge management related tasks, and uses Web, health and bioinformatics related applications as case studies. - Details the extension of the TMG framework for sequence mining - Provides an overview of the future research direction with respect to technical extensions and application areas The primary audience is 3rd year, 4th year undergraduate students, Masters and PhD students and academics. The book can be used for both teaching and research. The secondary audiences are practitioners in industry, business, commerce, government and consortiums, alliances and partnerships to learn how to introduce and efficiently make use of the techniques for mining of data with complex structures into their applications. The scope of the book is both theoretical and practical and as such it will reach a broad market both within academia and industry. In addition, its subject matter is a rapidly emerging field that is critical for efficient analysis of knowledge stored in various domains.

Mining of Data with Complex Structures

Mining of Data with Complex Structures PDF Author: Fedja Hadzic
Publisher: Springer Science & Business Media
ISBN: 3642175562
Category : Computers
Languages : en
Pages : 340

Get Book Here

Book Description
Mining of Data with Complex Structures: - Clarifies the type and nature of data with complex structure including sequences, trees and graphs - Provides a detailed background of the state-of-the-art of sequence mining, tree mining and graph mining. - Defines the essential aspects of the tree mining problem: subtree types, support definitions, constraints. - Outlines the implementation issues one needs to consider when developing tree mining algorithms (enumeration strategies, data structures, etc.) - Details the Tree Model Guided (TMG) approach for tree mining and provides the mathematical model for the worst case estimate of complexity of mining ordered induced and embedded subtrees. - Explains the mechanism of the TMG framework for mining ordered/unordered induced/embedded and distance-constrained embedded subtrees. - Provides a detailed comparison of the different tree mining approaches highlighting the characteristics and benefits of each approach. - Overviews the implications and potential applications of tree mining in general knowledge management related tasks, and uses Web, health and bioinformatics related applications as case studies. - Details the extension of the TMG framework for sequence mining - Provides an overview of the future research direction with respect to technical extensions and application areas The primary audience is 3rd year, 4th year undergraduate students, Masters and PhD students and academics. The book can be used for both teaching and research. The secondary audiences are practitioners in industry, business, commerce, government and consortiums, alliances and partnerships to learn how to introduce and efficiently make use of the techniques for mining of data with complex structures into their applications. The scope of the book is both theoretical and practical and as such it will reach a broad market both within academia and industry. In addition, its subject matter is a rapidly emerging field that is critical for efficient analysis of knowledge stored in various domains.

Complex Data Analytics with Formal Concept Analysis

Complex Data Analytics with Formal Concept Analysis PDF Author: Rokia Missaoui
Publisher:
ISBN: 9783030932794
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
FCA is an important formalism that is associated with a variety of research areas such as lattice theory, knowledge representation, data mining, machine learning, and semantic Web. It is successfully exploited in an increasing number of application domains such as software engineering, information retrieval, social network analysis, and bioinformatics. Its mathematical power comes from its concept lattice formalization in which each element in the lattice captures a formal concept while the whole structure represents a conceptual hierarchy that offers browsing, clustering and association rule mining. Complex data analytics refers to advanced methods and tools for mining and analyzing data with complex structures such as XML/Json data, text and image data, multidimensional data, graphs, sequences and streaming data. It also covers visualization mechanisms used to highlight the discovered knowledge. This edited book examines a set of important and relevant research directions in complex data management, and updates the contribution of the FCA community in analyzing complex and large data such as knowledge graphs and interlinked contexts. For example, Formal Concept Analysis and some of its extensions are exploited, revisited and coupled with recent processing parallel and distributed paradigms to maximize the benefits in analyzing large data.

Understanding Complex Datasets

Understanding Complex Datasets PDF Author: David Skillicorn
Publisher: CRC Press
ISBN: 1584888334
Category : Computers
Languages : en
Pages : 268

Get Book Here

Book Description
Making obscure knowledge about matrix decompositions widely available, Understanding Complex Datasets: Data Mining with Matrix Decompositions discusses the most common matrix decompositions and shows how they can be used to analyze large datasets in a broad range of application areas. Without having to understand every mathematical detail, the book

Mining of Massive Datasets

Mining of Massive Datasets PDF Author: Jure Leskovec
Publisher: Cambridge University Press
ISBN: 1107077230
Category : Computers
Languages : en
Pages : 480

Get Book Here

Book Description
Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.

Data Mining: Concepts and Techniques

Data Mining: Concepts and Techniques PDF Author: Jiawei Han
Publisher: Elsevier
ISBN: 0123814804
Category : Computers
Languages : en
Pages : 740

Get Book Here

Book Description
Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data

Data Mining the Web

Data Mining the Web PDF Author: Zdravko Markov
Publisher: John Wiley & Sons
ISBN: 0470108088
Category : Computers
Languages : en
Pages : 236

Get Book Here

Book Description
This book introduces the reader to methods of data mining on the web, including uncovering patterns in web content (classification, clustering, language processing), structure (graphs, hubs, metrics), and usage (modeling, sequence analysis, performance).

Structural Complexity Management

Structural Complexity Management PDF Author: Udo Lindemann
Publisher: Springer Science & Business Media
ISBN: 3540878890
Category : Technology & Engineering
Languages : en
Pages : 240

Get Book Here

Book Description
Product design is characterized by a steady increase in complexity. The main focus of this book is a structural approach on complexity management. This means, system structures are considered in order to address the challenge of complexity in all aspects of product design. Structures arise from the complex dependencies of system elements. Thus, the identification of system structures provides access to the understanding of system behavior in practical applications. The book presents a methodology that enables the analysis, control and optimization of complex structures, and the applicability of domain-spanning problems. The methodology allows significant improvements on handling system complexity by creating improved system understanding on the one hand and optimizing product design that is robust for system adaptations on the other hand. Developers can thereby enhance project coordination and improve communication between team members and as a result shorten development time. The practical application of the methodology is described by means of two detailed examples.

Complex Pattern Mining

Complex Pattern Mining PDF Author: Annalisa Appice
Publisher: Springer Nature
ISBN: 3030366170
Category : Technology & Engineering
Languages : en
Pages : 251

Get Book Here

Book Description
This book discusses the challenges facing current research in knowledge discovery and data mining posed by the huge volumes of complex data now gathered in various real-world applications (e.g., business process monitoring, cybersecurity, medicine, language processing, and remote sensing). The book consists of 14 chapters covering the latest research by the authors and the research centers they represent. It illustrates techniques and algorithms that have recently been developed to preserve the richness of the data and allow us to efficiently and effectively identify the complex information it contains. Presenting the latest developments in complex pattern mining, this book is a valuable reference resource for data science researchers and professionals in academia and industry.

Handbook of Statistical Analysis and Data Mining Applications

Handbook of Statistical Analysis and Data Mining Applications PDF Author: Ken Yale
Publisher: Elsevier
ISBN: 0124166458
Category : Mathematics
Languages : en
Pages : 824

Get Book Here

Book Description
Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

Information and Business Intelligence

Information and Business Intelligence PDF Author: Xilong Qu
Publisher: Springer
ISBN: 3642290876
Category : Computers
Languages : en
Pages : 780

Get Book Here

Book Description
This two-volume set (CCIS 267 and CCIS 268) constitutes the refereed proceedings of the International Conference on Information and Business Intelligence, IBI 2011, held in Chongqing, China, in December 2011. The 229 full papers presented were carefully reviewed and selected from 745 submissions. The papers address topics such as communication systems; accounting and agribusiness; information education and educational technology; manufacturing engineering; multimedia convergence; security and trust computing; business teaching and education; international business and marketing; economics and finance; and control systems and digital convergence.