Microwave Microfluidic Resonant Sensors and Applicators

Microwave Microfluidic Resonant Sensors and Applicators PDF Author: Hayder Miri Hamzah
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

Microwave Microfluidic Resonant Sensors and Applicators

Microwave Microfluidic Resonant Sensors and Applicators PDF Author: Hayder Miri Hamzah
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Microfluidic Microwave Resonant Sensors

Microfluidic Microwave Resonant Sensors PDF Author: David James Rowe
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Matter can be identified by its interaction with electromagnetic fields. This can be described by its dielectric and magnetic properties, which typically vary with respect to frequency in the microwave region. Microwave-frequency spectroscopy is capable of making non-contact, non-destructive, non-invasive and label-free measurements with respect to time. It can be used to characterise all states of matter and combinations thereof, such as colloids and microparticulate suspensions. Sensors based upon this technology therefore have great potential for (bio)chemical and industrial point-of-sampling applications where existing measurement techniques are insufficiently portable, low-cost or sensitive. Microfluidics is the manipulation of fluids within microscale geometries. This gives rise to phenomena not observed at the macroscale that can be exploited to achieve enhanced control of fluid flow. This means that microfluidic techniques can be used to perform complex chemistry in a completely sealed environment with minimal reagent consumption. Hence, microfluidics offers an ideal sample interfacing method for a microwave-frequency sensor. This work is concerned with developing novel, low-cost and highly sensitive probes that be easily integrated into a microfluidic device for performing on-chip sample preparation and diagnostics for generic (bio)chemical and industrial point-of-sampling applications. To this end, several novel microwave resonant structures were designed, optimised and integrated into microfluidic devices in order to characterise a variety of liquid-phase samples.

Compact Microwave Microfluidic Sensors and Applicator

Compact Microwave Microfluidic Sensors and Applicator PDF Author: Ali Amin Abduljabar
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Microfluidic Biosensors

Microfluidic Biosensors PDF Author: Wing Cheung Mak
Publisher: Elsevier
ISBN: 012823847X
Category : Technology & Engineering
Languages : en
Pages : 370

Get Book Here

Book Description
Microfluidic Biosensors provides a comprehensive overview covering the most recent emerging technologies on the design, fabrication, and integration of microfluidics with transducers. These form various integrated microfluidic biosensors with device configurations ranging from 2D to 4D levels. Coverage also includes advanced printed microfluidic biosensors, flexible microfluidics for wearable biosensors, autonomous lab-on-a-chip biosensors, CMOS-base microanalysis systems, and microfluidic devices for mobile phone biosensing. The editors and contributors of this book represent both academia and industry, come from a varied range of backgrounds, and offer a global perspective. This book discusses the design and principle of microfluidic systems and uses them for biosensing applications. The microfluidic fabrication technologies covered in this book provide an up-to-date view, allowing the community to think of new ways to overcome challenges faced in this field. The focus is on existing and emerging technologies not currently being analyzed extensively elsewhere, providing a unique perspective and much-needed content. The editors have crafted this book to be accessible to all levels of academics from graduate students, researchers, and professors working in the fields of biosensors, microfluidics design, material science, analytical chemistry, biomedical devices, and biomedical engineering. It can also be useful for industry professionals working for microfluidic device manufacturers, or in the industry of biosensors and biomedical devices. Presents an in-depth overview of microfluidic biosensors and associated emerging technologies such as printed microfluidics and novel transducers Addresses a range of microfluidic biosensors with device configurations ranging from 2D to 4D levels Includes the commercialization aspects of microfluidic biosensors that provide insights for scientists and engineers in research and development

Microwave/RF Applicators and Probes

Microwave/RF Applicators and Probes PDF Author: Mehrdad Mehdizadeh
Publisher: William Andrew
ISBN: 0323328423
Category : Technology & Engineering
Languages : en
Pages : 450

Get Book Here

Book Description
Microwave/RF Applicators and Probes for Material Heating, Sensing, and Plasma Generation, Second Edition, encompasses the area of high-frequency applicators and probes for material interactions as an integrated science. Based on practical experience rather than entirely on theoretical concepts, and emphasizing phenomenological explanations and well-annotated figures, the book represents one of the most important resources on the topics of microwave technologies, applications of RF and microwaves in industry (industrial heating and drying), and microwave engineering. After covering the basics of field-material interactions, the book reviews and categorizes probes and applicators, demonstrates their real-world applications, and offers numerically solved examples. Readers will find valuable design rules and principles of high-frequency applicators and probes for material processing and sensing applications in this expanded edition. Presents new information on how the interactions of electromagnetic fields with materials at high frequencies have given rise to a vast array of practical applications in industry, science, medicine, and consumer markets Thoroughly revised and expanded edition, providing an update on the most recent trends and findings Contains many new sections within existing chapters, along with new chapters on applicators for plasmas at microwave/RF frequencies

Microwave/RF Applicators and Probes for Material Heating, Sensing, and Plasma Generation

Microwave/RF Applicators and Probes for Material Heating, Sensing, and Plasma Generation PDF Author: Mehrdad Mehdizadeh
Publisher: William Andrew
ISBN: 0815519869
Category : Technology & Engineering
Languages : en
Pages : 402

Get Book Here

Book Description
Interactions of electromagnetic fields with materials at high frequencies have given rise to a vast array of practical applications in industry, science, medicine, and consumer markets. Applicators or probes, which are the front end of these systems, provide the field that interacts with the material. This book takes an integrated approach to the area of high frequency applicators and probes for material interactions, providing a toolkit for those who design these devices. Particular attention is given to real-world applications and the latest developments in the area. Mathematical methods are provided as design tools, and are often simplified via curve-fitting techniques that are particularly usable by handheld calculators. Useful equations and numerically solved examples, using situations encountered in practice, are supplied. Above all, this volume is a comprehensive and useful reference where the reader can find design rules and principles of high frequency applicators and probes for material processing and sensing applications. Electronic and electrical R&D engineers, physicists, university professors and students will all find this book a valuable reference. Mehrdad Mehdizadeh is with the DuPont Company, Engineering Research & Technology Division in Wilmington, Delaware. His areas of expertise include high frequency hardware and electromagnetic methods of processing, sensing, and characterization of materials. His work and innovation in industrial, scientific, and medical applications of radio frequency and microwaves has resulted in 19 US patents and a number of publications. He earned his Ph.D. and M.S. from Marquette University (1983, 1980), and a B.S. from Sharif University of Technology (1977), all in electrical engineering. Dr. Mehdizadeh is a Senior Member of the Institute of Electrical and Electronic Engineers (IEEE ), Sigma Xi (Scientific Research Society), the International Microwave Power Institute (IMPI ), and a voting member of IEEE Standard Association. Books in this area are usually theoretical; this book provides practical information for those who actually intend to design a system Features real world and numerically solved examples, and curve-fitted simple equations to replace complex equations provided in typical texts Author is a voting member of IEEE Standards Association

Electromagnetic Nanomaterials

Electromagnetic Nanomaterials PDF Author: Inamuddin
Publisher: John Wiley & Sons
ISBN: 1394167059
Category : Technology & Engineering
Languages : en
Pages : 348

Get Book Here

Book Description
ELECTROMAGNETIC METAMATERIALS The book presents an overview of metamaterials current state of development in several domains of application such as electromagnetics, electrical engineering, classical optics, microwave and antenna engineering, solid-state physics, materials sciences, and optoelectronics. Metamaterials have become a hot topic in the scientific community in recent years due to their remarkable electromagnetic properties. Metamaterials have the ability to alter electromagnetic and acoustic waves in ways that bulk materials cannot. Electromagnetic Metamaterials: Properties and Applications discusses a wide range of components to make metamaterial-engineered devices. It gives an overview of metamaterials’ current stage of development in a variety of fields such as remote aerospace applications, medical appliances, sensor detectors and monitoring devices of infrastructure, crowd handling, smart solar panels, radomes, high-gain antennas lens, high-frequency communication on the battlefield, ultrasonic detectors, and structures to shield from earthquakes. Audience Researchers and engineers in electromagnetic and electrical engineering, classical optics, microwave and antenna engineering, solid-state physics, materials sciences, and optoelectronics.

6th European Conference of the International Federation for Medical and Biological Engineering

6th European Conference of the International Federation for Medical and Biological Engineering PDF Author: Igor Lacković
Publisher: Springer
ISBN: 3319111280
Category : Technology & Engineering
Languages : en
Pages : 1065

Get Book Here

Book Description
This volume presents the Proceedings of the 6th European Conference of the International Federation for Medical and Biological Engineering (MBEC2014), held in Dubrovnik September 7 – 11, 2014. The general theme of MBEC 2014 is "Towards new horizons in biomedical engineering" The scientific discussions in these conference proceedings include the following themes: - Biomedical Signal Processing - Biomedical Imaging and Image Processing - Biosensors and Bioinstrumentation - Bio-Micro/Nano Technologies - Biomaterials - Biomechanics, Robotics and Minimally Invasive Surgery - Cardiovascular, Respiratory and Endocrine Systems Engineering - Neural and Rehabilitation Engineering - Molecular, Cellular and Tissue Engineering - Bioinformatics and Computational Biology - Clinical Engineering and Health Technology Assessment - Health Informatics, E-Health and Telemedicine - Biomedical Engineering Education

Process Intensification

Process Intensification PDF Author: David Reay
Publisher: Butterworth-Heinemann
ISBN: 0080983057
Category : Technology & Engineering
Languages : en
Pages : 624

Get Book Here

Book Description
Process Intensification: Engineering for Efficiency, Sustainability and Flexibility is the first book to provide a practical working guide to understanding process intensification (PI) and developing successful PI solutions and applications in chemical process, civil, environmental, energy, pharmaceutical, biological, and biochemical systems. Process intensification is a chemical and process design approach that leads to substantially smaller, cleaner, safer, and more energy efficient process technology. It improves process flexibility, product quality, speed to market and inherent safety, with a reduced environmental footprint. This book represents a valuable resource for engineers working with leading-edge process technologies, and those involved research and development of chemical, process, environmental, pharmaceutical, and bioscience systems. No other reference covers both the technology and application of PI, addressing fundamentals, industry applications, and including a development and implementation guide Covers hot and high growth topics, including emission prevention, sustainable design, and pinch analysis World-class authors: Colin Ramshaw pioneered PI at ICI and is widely credited as the father of the technology

Converging Technologies for Improving Human Performance

Converging Technologies for Improving Human Performance PDF Author: Mihail C. Roco
Publisher: Springer Science & Business Media
ISBN: 9401703590
Category : Technology & Engineering
Languages : en
Pages : 477

Get Book Here

Book Description
M. C. Roco and W.S. Bainbridge In the early decades of the 21st century, concentrated efforts can unify science based on the unity of nature, thereby advancing the combination of nanotechnology, biotechnology, information technology, and new technologies based in cognitive science. With proper attention to ethical issues and societal needs, converging in human abilities, societal technologies could achieve a tremendous improvement outcomes, the nation's productivity, and the quality of life. This is a broad, cross cutting, emerging and timely opportunity of interest to individuals, society and humanity in the long term. The phrase "convergent technologies" refers to the synergistic combination of four major "NBIC" (nano-bio-info-cogno) provinces of science and technology, each of which is currently progressing at a rapid rate: (a) nanoscience and nanotechnology; (b) biotechnology and biomedicine, including genetic engineering; (c) information technology, including advanced computing and communications; (d) cognitive science, including cognitive neuroscience. Timely and Broad Opportunity. Convergence of diverse technologies is based on material unity at the nanoscale and on technology integration from that scale.